Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 93(1-2): 81-5, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24162202

RESUMO

The lax-a homeotic mutant of barley has flowers in which lodicules are replaced by stamens (giving five stamens per flower). RFLP mapping of an F2 population from a Bonus lax-a (1) x H. spontaneum cross showed that the mutation was on the short arm of chromosome 7(5H), closely linked to the centromere. An additional F2 population was used to show that the lax-a mutation gave the five-stamen phenotype in all flowers of 6-rowed spikes and that hoods were elevated and reduced in size in lax-a/Hooded double-mutant plants.

2.
Genome ; 38(3): 575-85, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18470191

RESUMO

A genetic map of 92 RFLP loci and two storage protein loci was made using 94 doubled-haploid lines from a cross between the winter barley variety Igri and the spring variety Triumph. The markers were combined with data from two field experiments (one spring sown and one autumn (fall) sown) and a glasshouse experiment to locate a total of 13 genes (five major genes and eight quantitative trait loci (QTL)) controlling flowering time. Two photoperiod response genes were found; Ppd-H1 on chromosome 2(2H)S regulated flowering time under long days, while Ppd-H2 on chromosome 5(1H)L was detected only under short days. In the field experiments Ppd-H1 strongly affected flowering time from spring and autumn sowings, while Ppd-H2 was detected only in the autumn sowing. The glasshouse experiment also located two vernalization response genes, probably Sh and Sh2, on chromosomes 4(4H)L and 7(5H)L, respectively. The vernalization response genes had little effect on flowering time in the field. Variation in flowering time was also affected by nine additional genes, whose effects were not specifically dependent on photoperiod or vernalization. One was the denso dwarfing gene on chromosome 3(3H)L. The remaining eight were QTLs of smaller effect. One was located on chromosome 2(2H), one on 3(3H), one on 4(4H), one on 7(5H), two on 6(6H), and two on 1(7H). Model fitting showed that the 13 putative genes, and their interactions, could account for all the observed genetical variation from both spring and autumn sowings, giving a complete model for the control of flowering time in this cross.

3.
Theor Appl Genet ; 87(1-2): 177-83, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24190210

RESUMO

The 5S rDNA locus on the long arm of barley chromosome 2(2H) was genetically mapped in two crosses in relation to 30 other RFLP loci. Comparison of the genetic maps with the previously published physical position of the 5S rDNA, determined by in-situ hybridization, showed that there was a marked discrepancy between physical and genetic distance in both crosses, with recombination being less frequent in the proximal part of the arm. Pooled information from the present study and other published genetic maps showed that at least 26 of the 44 (59%) RFLPs that have been mapped on 2(2H)L lie distal to the 5S rDNA locus even though this region is only 27% of the physical length of the arm. The distribution of RFLP markers is significantly different from expected (P < 0.01), implying that the low-copy sequences used for RFLP analysis occur more frequently in distal regions of the arm and, or, that sequences in distal regions are more polymorphic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...