Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 323(Pt A): 575-583, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27329790

RESUMO

Pharmaceutical residues presence in the environment is among nowadays top emergent environmental issues. For removal of such pollutants, adsorption is a generally efficient process that can be complementary to conventional treatment. Research of cheap, widely available adsorbents may make this process economically attractive. The aim of the present work was to evaluate the capacity of two clay materials (exfoliated vermiculite, LECA) to adsorb gemfibrozil, mefenamic acid and naproxen in lab-scale batch assays. Results show that both adsorbents are able to remove the pharmaceuticals from aqueous medium. Although vermiculite exhibited higher adsorption capacities per unit mass of adsorbent, LECA yielded higher absolute removals of the pharmaceuticals due to the larger mass of adsorbent. Quantum chemistry calculations predicted that the forms of binding of the three molecules to the vermiculite surface are essentially identical, but the adsorption isotherm of naproxen differs substantially from the other two's. The linear forms of the latter impose limits at lower concentrations to the removal efficiencies of these pharmaceuticals by vermiculite, thereby electing LECA as more efficient. Notwithstanding, vermiculite's high specific adsorption capacity and also its much faster adsorption kinetics suggest that there may be some benefits in combining both materials as a composite adsorbent solution.


Assuntos
Silicatos de Alumínio/química , Preparações Farmacêuticas/isolamento & purificação , Adsorção , Argila , Simulação por Computador , Resíduos de Drogas/isolamento & purificação , Genfibrozila/química , Genfibrozila/isolamento & purificação , Cinética , Ácido Mefenâmico/química , Ácido Mefenâmico/isolamento & purificação , Modelos Moleculares , Naproxeno/química , Naproxeno/isolamento & purificação , Tamanho da Partícula , Termodinâmica , Eliminação de Resíduos Líquidos
2.
Phys Chem Chem Phys ; 18(10): 7042-54, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26727975

RESUMO

Nitrobenzoxadiazole (NBD)-labeled lipids are popular fluorescent membrane probes. However, the understanding of important aspects of the photophysics of NBD remains incomplete, including the observed shift in the emission spectrum of NBD-lipids to longer wavelengths following excitation at the red edge of the absorption spectrum (red-edge excitation shift or REES). REES of NBD-lipids in membrane environments has been previously interpreted as reflecting restricted mobility of solvent surrounding the fluorophore. However, this requires a large change in the dipole moment (Δµ) of NBD upon excitation. Previous calculations of the value of Δµ of NBD in the literature have been carried out using outdated semi-empirical methods, leading to conflicting values. Using up-to-date density functional theory methods, we recalculated the value of Δµ and verified that it is rather small (∼2 D). Fluorescence measurements confirmed that the value of REES is ∼16 nm for 1,2-dioleoyl-sn-glycero-3-phospho-l-serine-N-(NBD) (NBD-PS) in dioleoylphosphatidylcholine vesicles. However, the observed shift is independent of both the temperature and the presence of cholesterol and is therefore insensitive to the mobility and hydration of the membrane. Moreover, red-edge excitation leads to an increased contribution of the decay component with a shorter lifetime, whereas time-resolved emission spectra of NBD-PS displayed an atypical blue shift following excitation. This excludes restrictions to solvent relaxation as the cause of the measured REES and TRES of NBD, pointing instead to the heterogeneous transverse location of probes as the origin of these effects. The latter hypothesis was confirmed by molecular dynamics simulations, from which the calculated heterogeneity of the hydration and location of NBD correlated with the measured fluorescence lifetimes/REES. Globally, our combination of theoretical and experiment-based techniques has led to a considerably improved understanding of the photophysics of NBD and a reinterpretation of its REES in particular.


Assuntos
Benzoxazóis/química , Corantes Fluorescentes/química , Lipídeos/química , Fluorescência , Simulação de Dinâmica Molecular , Teoria Quântica , Espectrometria de Fluorescência
3.
Phys Chem Chem Phys ; 17(31): 20066-79, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26063509

RESUMO

A complete homologous series of fluorescent phosphatidylethanolamines (diCnPE), labelled at the head group with a 7-nitrobenz-2-oxa-1,3-diazo-4-yl(NBD) fluorophore and inserted in 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, was studied using atomistic molecular dynamics simulations. The longer-chained derivatives of NBD-diCnPE, with n = 14, 16, and 18, are commercially available, and widely used as fluorescent membrane probes. Properties such as location of atomic groups and acyl chain order parameters of both POPC and NBD-diCnPE, fluorophore orientation and hydrogen bonding, membrane electrostatic potential and lateral diffusion were calculated for all derivatives in the series. Most of these probes induce local disordering of POPC acyl chains, which is on the whole counterbalanced by ordering resulting from binding of sodium ions to lipid carbonyl/glycerol oxygen atoms. An exception is found for NBD-diC16PE, which displays optimal matching with POPC acyl chain length and induces a slight local ordering of phospholipid acyl chains. Compared to previously studied fatty amines, acyl chain-labelled phosphatidylcholines, and sterols bearing the same fluorescent tag, the chromophore in NBD-diCnPE locates in a similar region of the membrane (near the glycerol backbone/carbonyl region) but adopts a different orientation (with the NO2 group facing the interior of the bilayer). This modification leads to an inverted orientation of the P-N axis in the labelled lipid, which affects the interface properties, such as the membrane electrostatic potential and hydrogen bonding to lipid head group atoms. The implications of this study for the interpretation of the photophysical properties of NBD-diCnPE (complex fluorescence emission kinetics, differences with other NBD lipid probes) are discussed.


Assuntos
Azóis/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Nitrobenzenos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Ligação de Hidrogênio , Conformação Molecular , Eletricidade Estática
4.
Comput Math Methods Med ; 2012: 151854, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675399

RESUMO

T-1249 is a peptide that inhibits the fusion of HIV envelope with the target cell membrane. Recent results indicate that T-1249, as in the case of related inhibitor peptide T-20 (enfuvirtide), interacts with membranes, more extensively in the bilayer liquid disordered phase than in the liquid ordered state, which could be linked to its effectiveness. Extensive molecular dynamics simulations (100 ns) were carried out to investigate the interaction between T-1249 and bilayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and POPC/cholesterol (1 : 1). It was observed that T-1249 interacts to different extents with both membrane systems and that peptide interaction with the bilayer surface has a local effect on membrane structure. Formation of hydrogen bonding between certain peptide residues and several acceptor and donor groups in the bilayer molecules was observed. T-1249 showed higher extent of interaction with bilayers when compared to T-20. This is most notable in POPC/Chol membranes, owing to more peptide residues acting as H bond donors and acceptors between the peptide and the bilayer lipids, including H-bonds formed with cholesterol. This behavior is at variance with that of T-20, which forms no H bonds with cholesterol. This higher ability to interact with membranes is probably correlated with its higher inhibitory efficiency.


Assuntos
Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Colesterol/química , HIV-1/patogenicidade , HIV-1/fisiologia , Humanos , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Internalização do Vírus/efeitos dos fármacos
5.
Langmuir ; 27(7): 3723-30, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21391652

RESUMO

In this article, we investigate fluid-gel transformations of a DPPC lipid bilayer in the presence of nanoparticles, using coarse-grained molecular dynamics. Two types of nanoparticles are considered, specifically a 3 nm hydrophobic nanoparticle located in the core of the bilayer and a 6 nm charged nanoparticle located at the interface between the bilayer and water phase. Both negatively and positively charged nanoparticles at the bilayer interface are investigated. We demonstrate that the presence of all types of nanoparticles induces disorder effects in the structure of the lipid bilayer. These effects are characterized using computer visualization of the gel phase in the presence of nanoparticles, radial distribution functions, and order parameters. The 3 nm hydrophobic nanoparticle immersed in the bilayer core and the positively charged nanoparticle at the bilayer surface have no effect on the temperature of the fluid-gel transformation, compared to the bulk case. Interestingly, a negatively charged hydrophobic nanoparticle located at the surface of the bilayer causes slight shift of the fluid-gel transformation to a lower temperature, compared to the bulk bilayer case.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Nanopartículas/química , Nanotecnologia
6.
Biophys Rev ; 1(3): 141, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28509994

RESUMO

Fluorescence spectroscopy and microscopy have been used as tools to study membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Two major points of concern arise regarding this matter, namely the incomplete understanding of the probe behavior inside the bilayer and the perturbation of the latter resulting from probe incorporation. To this effect, molecular dynamics (MD) simulations, by providing detailed atomic-scale information, represent a valuable way to characterize the location and dynamics of bilayer-inserted membrane probes, as well as the magnitude of perturbation they induce on the host lipid structure, and several important classes of reporter molecules have been studied in recent years. This article reviews the state of the art of MD simulations of bilayer-inserted fluorescent probes, focusing on the information that has been obtained from previous studies and hinting at future perspectives in this rapidly emerging field.

7.
J Pept Sci ; 14(4): 442-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18069719

RESUMO

Fusion of the HIV envelope with the target cell membrane is a critical step of the HIV entry into the target cell. Several peptides based on the C-region of HIV gp41 have been used in clinical trials as possible HIV fusion inhibitors. Among these are T-1249 and T-20 (also known as enfurvitide). Despite recent works, a detailed molecular picture of the inhibitory mechanism of these molecules is still lacking. These peptides are usually depicted as alpha-helices by analogy with the structure of the sequence of the gp41 protein with which they are homologous. However, structures like these would be highly unstable in solution and thus would not explain, by themselves, the ability that the two fusion inhibitors have to become solvated by water and also interact effectively with cell membranes. To this effect, extensive molecular dynamics simulations were carried out to investigate the structure and conformational behavior of T-1249 and T-20 in water, as well as shorter homologous peptides CTP and 3f5, which show no inhibitory action. We found that the studied inhibitors have no stable structure in solution in the time scale studied. Additionally, the solvent accessible area varies significantly during the simulation. Our findings suggest that these peptides may assume not only one, but several possible sets of structures in solution, some of which more adequate to interact with the solvent, whereas others might be better suited to interact with cell membranes. Interestingly, and in accordance with published experimental studies, we verified that T-1249 displays considerably larger alpha-helical structure than T-20. Taking into account a recent study with design peptides with increased helicity, it is possible that this feature may be related to the increased inhibiting efficiency of T-1249 relative to that of T-20.


Assuntos
Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/química , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Simulação por Computador , Enfuvirtida , Proteína gp41 do Envelope de HIV/farmacologia , Inibidores da Fusão de HIV/farmacologia , Humanos , Conformação Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/farmacologia , Estrutura Secundária de Proteína , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...