Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(11): e4153, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37610797

RESUMO

The Rocky Mountain Biological Laboratory (RMBL; Colorado, USA) is the site for many research projects spanning decades, taxa, and research fields from ecology to evolutionary biology to hydrology and beyond. Climate is the focus of much of this work and provides important context for the rest. There are five major sources of data on climate in the RMBL vicinity, each with unique variables, formats, and temporal coverage. These data sources include (1) RMBL resident billy barr, (2) the National Oceanic and Atmospheric Administration (NOAA), (3) the United States Geological Survey (USGS), (4) the United States Department of Agriculture (USDA), and (5) Oregon State University's PRISM Climate Group. Both the NOAA and the USGS have automated meteorological stations in Crested Butte, CO, ~10 km from the RMBL, while the USDA has an automated meteorological station on Snodgrass Mountain, ~2.5 km from the RMBL. Each of these data sets has unique spatial and temporal coverage and formats. Despite the wealth of work on climate-related questions using data from the RMBL, previous researchers have each had to access and format their own climate records, make decisions about handling missing data, and recreate data summaries. Here we provide a single curated climate data set of daily observations covering the years 1975-2022 that blends information from all five sources and includes annotated scripts documenting decisions for handling data. These synthesized climate data will facilitate future research, reduce duplication of effort, and increase our ability to compare results across studies. The data set includes information on precipitation (water and snow), snowmelt date, temperature, wind speed, soil moisture and temperature, and stream flows, all publicly available from a combination of sources. In addition to the formatted raw data, we provide several new variables that are commonly used in ecological analyses, including growing degree days, growing season length, a cold severity index, hard frost days, an index of El Niño-Southern Oscillation, and aridity (standardized precipitation evapotranspiration index). These new variables are calculated from the daily weather records. As appropriate, data are also presented as minima, maxima, means, residuals, and cumulative measures for various time scales including days, months, seasons, and years. The RMBL is a global research hub. Scientists on site at the RMBL come from many countries and produce about 50 peer-reviewed publications each year. Researchers from around the world also routinely use data from the RMBL for synthetic work, and educators around the United States use data from the RMBL for teaching modules. This curated and combined data set will be useful to a wide audience. Along with the synthesized combined data set we include the raw data and the R code for cleaning the raw data and creating the monthly and yearly data sets, which facilitate adding additional years or data using the same standardized protocols. No copyright or proprietary restrictions are associated with using this data set; please cite this data paper when the data are used in publications or scientific events.


Assuntos
Neve , Tempo (Meteorologia) , Humanos , Estações do Ano , Temperatura , El Niño Oscilação Sul
2.
Proc Biol Sci ; 290(1990): 20222181, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629105

RESUMO

The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975-2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species' phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.


Assuntos
Ecossistema , Insetos , Animais , Mudança Climática , Estações do Ano , Temperatura , Aves , Mamíferos
3.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763345

RESUMO

Integrins - the principal extracellular matrix (ECM) receptors of the cell - promote cell adhesion, migration, and proliferation, which are key events for cancer growth and metastasis. To date, most integrin-targeted cancer therapeutics have disrupted integrin-ECM interactions, which are viewed as critical for integrin functions. However, such agents have failed to improve cancer patient outcomes. We show that the highly expressed integrin ß1 subunit is required for lung adenocarcinoma development in a carcinogen-induced mouse model. Likewise, human lung adenocarcinoma cell lines with integrin ß1 deletion failed to form colonies in soft agar and tumors in mice. Mechanistically, we demonstrate that these effects do not require integrin ß1-mediated adhesion to ECM but are dependent on integrin ß1 cytoplasmic tail-mediated activation of focal adhesion kinase (FAK). These studies support a critical role for integrin ß1 in lung tumorigenesis that is mediated through constitutive, ECM binding-independent signaling involving the cytoplasmic tail.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Integrinas , Ligantes , Neoplasias Pulmonares/patologia , Camundongos
4.
Kidney Cancer J ; 6(3): 179-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684483

RESUMO

BACKGROUND: SET domain-containing protein 2 (SETD2) is commonly mutated in renal cell carcinoma. SETD2 methylates histone H3 as well as a growing list of non-histone proteins. OBJECTIVE: Initially, we sought to explore SETD2-dependent changes in lysine methylation of proteins in proximal renal tubule cells. Subsequently, we focused on changes in lysine methylation of the translation elongation factor eEF1A1. METHODS: To accomplish these objectives, we initially performed a systems-wide analysis of protein lysine-methylation and expression in wild type (WT) and SETD2-knock out (KO) kidney cells and later focused our studies on eEF1A1 as well as the expression of lysine methyltransferases that regulate its lysine methylation. RESULTS: We observed decreased lysine methylation of the translation elongation factor eEF1A1. EEF1AKMT2 and EEF1AKMT3 are known to methylate eEF1A1, and we show here that their expression is dependent on SET-domain function of SETD2. Globally, we observe differential expression of hundreds of proteins in WT versus SETD2-KO cells, including increased expression of many involved in protein translation. Finally, we observe decreased progression free survival and loss of EEF1AKMT2 gene expression in SETD2-mutated tumors predicted to have loss of function of the SET domain. CONCLUSION: Overall, these data suggest that SETD2-mutated ccRCC, via loss of enzymatic function of the SET domain, displays dysregulation of protein translation as a potentially important component of the transformed phenotype.

5.
Ecology ; 102(9): e03453, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165805

RESUMO

The impacts of altered biogeochemical cycles on ecological systems are likely to vary with trophic level. Predicting how these changes will affect ecological food webs is further complicated by human activities, which are simultaneously altering the availability of macronutrients like nitrogen (N) and phosphorus (P), and micronutrients such as sodium (Na). Here we contrast three hypotheses that predict how increasing nutrient availability will shape grassland food webs. We conducted a distributed factorial fertilization experiment (N and P crossed with NaCl) across four North American grasslands, quantifying the responses of aboveground plant biomass and volume, plant tissue and soil elemental concentrations, as well as the abundance of five arthropod functional groups. Fertilization with N and P increased plant biomass and foliar N and P concentrations in grasses but not forbs. Fertilization with Na had no effect on plant biomass but increased foliar Na concentrations. Consistent with the nutrient limitation hypothesis, we found strong evidence of nutrient limitation for insect herbivores across the four sites with sucking (phloem and xylem feeding) herbivores increasing in abundance with NP fertilization and chewing herbivores increasing in response to both Na and NP fertilization, and a trend for increased response of arthropods to lower plant nutrient availability. We found no evidence for an interaction of NaCl and NP on arthropod abundance as predicted by the serial colimitation hypothesis. Finally, consistent with the ecosystem size hypothesis, predator and parasitoid abundances increased with plant volume, but not fertilization. Our results suggest these functional group-specific responses to changes in plant nutrients and structure are key to predicting the future of grassland food webs in an era with increasing use of N and P fertilizers, and increasing terrestrial inputs of Na from road salt, saline irrigation water, and aerosols due to rising sea levels.


Assuntos
Cadeia Alimentar , Herbivoria , Ecossistema , Qualidade dos Alimentos , Pradaria
6.
Environ Entomol ; 49(2): 304-311, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32144932

RESUMO

For social organisms, foraging is often a complicated behavior where tasks are divided among numerous individuals. Here, we ask how one species, the red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae), collectively manages this behavior. We tested the Diminishing Returns Hypothesis, which posits that for social insects 1) foraging investment levels increase until diminishing gains result in a decelerating slope of return and 2) the level of investment is a function of the size of the collective group. We compared how different metrics of foraging (e.g., number of foragers, mass of foragers, and body size of foragers) are correlated and how these metrics change over time. We then tested the prediction that as fire ant colonies increase in size, both discovery time and the inflection point (i.e., the time point where colonial investment toward resources slows) should decrease while a colony's maximum foraging mass should increase. In congruence with our predictions, we found that fire ants recruited en masse toward baits, allocating 486 workers and 148 mg of biomass, on average, after 60 min: amounts that were not different 30 min prior. There was incredible variation across colonies with discovery time, the inflection point, and the maximum biomass of foragers all being significantly correlated with colony size. We suggest that biomass is a solid indicator of how social taxa invest their workforce toward resources and hypothesize ways that invasive fire ants are able to leverage their enormous workforce to dominate novel ecosystems by comparing their foraging and colony mass with co-occurring native species.


Assuntos
Formigas , Animais , Ecossistema
7.
J Anim Ecol ; 89(5): 1286-1294, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32115723

RESUMO

We investigate where bottom-up and top-down control regulates ecological communities as a mechanism linking ecological gradients to the geography of consumer abundance and biomass. We use standardized surveys of 54 North American grasslands to test alternate hypotheses predicting 100-fold shifts in the biomass of four common grassland arthropod taxa-Auchenorrhyncha, sucking herbivores, Acrididae, chewing herbivores, Tettigoniidae, omnivores, and Araneae, predators. Bottom-up models predict that consumer biomass tracks plant quantity (e.g. productivity and standing biomass) and quality (nutrient content) and that ectotherm access to food increases with temperature. Each of the focal trophic groups responded differently to these drivers: the biomass of sucking herbivores and omnivores increased with plant biomass; that of chewing herbivores tracked plant quality; and predator biomass did not depend on plant quality, plant quantity or temperature. The Exploitation Ecosystem Hypothesis is a top-down hypothesis that predicts a shift from resource limitation of herbivores when plant production is low, to predator limitation when plant production is high. In grasslands where spider biomass was low, herbivore biomass increased with plant biomass, whereas bottom-up structuring was not evident when spiders were abundant. Furthermore, neither predator biomass nor trophic position (via stable isotope analysis) increased with plant biomass, suggesting predators themselves are top-down limited. Stable isotope analysis revealed that trophic position of the chewing herbivore and omnivore increased significantly with plant biomass, suggesting these groups increased scavenging and meat consumption in grasslands with higher carbohydrate availability. Taken together, our snapshot sampling documents gradients of food web structure across 54 grasslands, consistent with multiple hypotheses of bottom-up and top-down regulation.


Assuntos
Artrópodes , Animais , Biomassa , Ecossistema , Cadeia Alimentar , Pradaria , Herbivoria
8.
Ecology ; 101(6): e03033, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112407

RESUMO

Arthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant-arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed-grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.


Assuntos
Artrópodes , Animais , Biodiversidade , Biomassa , Secas , Pradaria , Humanos , Plantas
9.
Ecology ; 99(9): 2113-2121, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29989154

RESUMO

As ecosystems warm, ectotherm consumer activity should also change. Here we use principles from metabolic and thermal ecology to explore how seasonal and diel temperature change shapes a prairie ant community's foraging rate and its demand for two fundamental resources: salt and sugar. From April through October 2016 we ran transects of vials filled with solutions of 0.5% NaCl and 1% sucrose. We first confirm a basic prediction rarely tested: the discovery rate of both food resources accelerated with soil temperature, but this increase was typically capped at midday due to extreme surface temperatures. We then tested the novel prediction that sodium demand accelerates with temperature, premised on a key thermal difference between sugar and sodium: sugar is stored in cells, while salt is pumped out of cells proportional to metabolic rate, and hence temperature. We found strong support for the resulting prediction that recruitment to NaCl baits accelerates with temperature more steeply than recruitment to 1% sucrose baits. A follow up experiment in 2017 verified that temperature-dependent recruitment to sucrose concentrations of 20% (mimicking rich extrafloral nectaries), while noisy, was still only half as temperature dependent as recruitment recorded for 0.5% NaCl. These results demonstrate how ecosystem warming accelerates then curtails the work done by a community of ectotherms, and how the demand and use of fundamental nutrients can be differentially temperature dependent.


Assuntos
Formigas , Animais , Ecologia , Ecossistema , Pradaria , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...