Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Frontline Gastroenterol ; 11(5): 375-384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879721

RESUMO

Liver transplantation is a highly successful treatment for all types of liver failure, some non-liver failure indications and liver cancer. Most referrals come from secondary care. This first part of a two-part guideline outlines who to refer, and how that referral should be made, including patient details and additional issues such as those relevant to alcohol and drug misuse. The process of liver transplant assessment involves the confirmation of the diagnosis and non-reversibility, an evaluation of comorbidities and exclusion of contraindications. Finally, those making it onto the waiting list require monitoring and optimising. Underpinning this process is a need for good communication between patient, their carers, secondary care and the liver transplant service, synchronised by the transplant coordinator. Managing expectation and balancing the uncertainty of organ availability against the inevitable progression of underlying liver disease requires sensitivity and honesty from all healthcare providers and the assessment of palliative care needs is an integral part of this process.

2.
Frontline Gastroenterol ; 11(5): 385-396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879722

RESUMO

Survival rates for patients following liver transplantation exceed 90% at 12 months and approach 70% at 10 years. Part 1 of this guideline has dealt with all aspects of liver transplantation up to the point of placement on the waiting list. Part 2 explains the organ allocation process, organ donation and organ type and how this influences the choice of recipient. After organ allocation, the transplant surgery and the critical early post-operative period are, of necessity, confined to the liver transplant unit. However, patients will eventually return to their referring secondary care centre with a requirement for ongoing supervision. Part 2 of this guideline concerns three key areas of post liver transplantation care for the non-transplant specialist: (1) overseeing immunosuppression, including interactions and adherence; (2) the transplanted organ and how to initiate investigation of organ dysfunction; and (3) careful oversight of other organ systems, including optimising renal function, cardiovascular health and the psychosocial impact. The crucial significance of this holistic approach becomes more obvious as time passes from the transplant, when patients should expect the responsibility for managing the increasing number of non-liver consequences to lie with primary and secondary care.

3.
Hum Mol Genet ; 25(4): 660-71, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26669719

RESUMO

Biogenesis of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain, is a complex process facilitated by several assembly factors. Pathogenic mutations were recently reported in one such assembly factor, COA6, and our previous work linked Coa6 function to mitochondrial copper metabolism and expression of Cox2, a copper-containing subunit of CcO. However, the precise role of Coa6 in Cox2 biogenesis remained unknown. Here we show that yeast Coa6 is an orthologue of human COA6, and like Cox2, is regulated by copper availability, further implicating it in copper delivery to Cox2. In order to place Coa6 in the Cox2 copper delivery pathway, we performed a comprehensive genetic epistasis analysis in the yeast Saccharomyces cerevisiae and found that simultaneous deletion of Coa6 and Sco2, a mitochondrial copper metallochaperone, or Coa6 and Cox12/COX6B, a structural subunit of CcO, completely abrogates Cox2 biogenesis. Unlike Coa6 deficient cells, copper supplementation fails to rescue Cox2 levels of these double mutants. Overexpression of Cox12 or Sco proteins partially rescues the coa6Δ phenotype, suggesting their overlapping but non-redundant roles in copper delivery to Cox2. These genetic data are strongly corroborated by biochemical studies demonstrating physical interactions between Coa6, Cox2, Cox12 and Sco proteins. Furthermore, we show that patient mutations in Coa6 disrupt Coa6-Cox2 interaction, providing the biochemical basis for disease pathogenesis. Taken together, these results place COA6 in the copper delivery pathway to CcO and, surprisingly, link it to a previously unidentified function of CcO subunit Cox12 in Cox2 biogenesis.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças Mitocondriais/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cobre/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares , Mutação , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...