Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(14): e2300073, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965101

RESUMO

Constructing stable heterostructures with appropriate active site architectures in covalent organic frameworks (COFs) can improve the active site accessibility and facilitate charge transfer, thereby increasing the catalytic efficiency. Herein, a pore-wall modification strategy is proposed to achieve regularly arranged TiO2 nanodots (≈1.82 nm) in the pores of COFs via site-specific nucleation. The site-specific nucleation strategy stabilizes the TiO2 nanodots as well as enables the controlled growth of TiO2 throughout the COFs' matrix. In a typical process, the pore wall is modified and site-specific nucleation is induced between the metal precursors and the organic walls of the COFs through a careful ligand selection, and the strongly bonded metal precursors drive the confined growth of ultrasmall TiO2 nanodots during the subsequent hydrolysis. This will result in remarkably improved surface reactions, owing to the superior catalytic activity of TiO2 nanodots functionalized to COFs through strong NTiO bonds. Furthermore, density functional theory studies reveal that pore-wall modification is beneficial for inducing strong interactions between the COF and TiO2 and results in a large energy transfer via the NTiO bonds. This work highlights the feasibility of developing stable COF and metal oxide based heterostructures via organic wall modifications to produce carbon fuels by artificial photosynthesis.

2.
Chem Commun (Camb) ; 49(82): 9443-5, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24010131

RESUMO

Solar light induced interfacial charge transfer of electrons from TiO2 to CuO in a water-glycerol mixture produced 99,823 µmol h(-1) g(-1)catalyst of hydrogen gas. The dispersed CuO/TiO2 photocatalyst in solution exhibited uni-directional electron flow and capture at the Schottky barrier facilitating charge separation and electron transfer resulting in enhanced H2 production performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...