Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 4(2): eaao3603, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29423443

RESUMO

We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk.

2.
Nat Commun ; 8(1): 395, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855569

RESUMO

In a solid-state host, attractive electron-electron interactions can lead to the formation of local electron pairs which play an important role in the understanding of prominent phenomena such as high T c superconductivity and the pseudogap phase. Recently, evidence of a paired ground state without superconductivity was demonstrated at the level of single electrons in quantum dots at the interface of LaAlO3 and SrTiO3. Here, we present a detailed study of the excitation spectrum and transport processes of a gate-defined LaAlO3/SrTiO3 quantum dot exhibiting pairing at low temperatures. For weak tunneling, the spectrum agrees with calculations based on the Anderson model with a negative effective charging energy U, and exhibits an energy gap corresponding to the Zeeman energy of the magnetic pair-breaking field. In contrast, for strong coupling, low-bias conductance is enhanced with a characteristic dependence on temperature, magnetic field and chemical potential consistent with the charge Kondo effect.Complex oxide devices provide a platform for studying and making use of strongly correlated electronic behavior. Here the authors present a LaAlO3/SrTiO3 quantum dot and show that its transport behavior is consistent with the presence of attractive electron interactions and the charge Kondo effect.

3.
Phys Rev Lett ; 117(9): 096804, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610874

RESUMO

The two-dimensional metal forming at the interface between an oxide insulator and SrTiO_{3} provides new opportunities for oxide electronics. However, the quantum Hall effect, one of the most fascinating effects of electrons confined in two dimensions, remains underexplored at these complex oxide heterointerfaces. Here, we report the experimental observation of quantized Hall resistance in a SrTiO_{3} heterointerface based on the modulation-doped amorphous-LaAlO_{3}/SrTiO_{3} heterostructure, which exhibits both high electron mobility exceeding 10,000 cm^{2}/V s and low carrier density on the order of ∼10^{12} cm^{-2}. Along with unambiguous Shubnikov-de Haas oscillations, the spacing of the quantized Hall resistance suggests that the interface is comprised of a single quantum well with ten parallel conducting two-dimensional sub-bands. This provides new insight into the electronic structure of conducting oxide interfaces and represents an important step towards designing and understanding advanced oxide devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...