Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920937

RESUMO

Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the potential of donkey gelatin and keratin for blending with natural bioactive extracts such as sumac, curcumin, and oak acorn to fabricate antioxidant and antimicrobial nanofibers with accelerated wound healing processes. The fabricated nanofibers possess good in vitro biocompatibility, except for the sumac-based donkey nanofibers, where cell viability significantly dropped to 56.25% (p < 0.05 compared to non-treated cells). The nanofiber dimensions showed structural similarities to human extracellular matrix components, providing an ideal microenvironment for tissue regeneration. The donkey nanofiber-based sumac and curcumin extracts presented a higher dissolution in the first 10 min (74% and 72%). Curcumin extract showed similar antimicrobial and antifungal performances to rivanol, while acorn and sumac extracts demonstrated similar values to each other. In vitro tests performed on murine fibroblast cells demonstrated high migration rates of 89% and 85% after 24 h in the case of acorn and curcumin nanofibers, respectively, underscoring the potential of these nanofibers as versatile platforms for advanced wound care applications.

2.
Environ Sci Pollut Res Int ; 30(54): 114779-114821, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919505

RESUMO

Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.


Assuntos
Poluentes Ambientais , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Águas Residuárias , Água
3.
Polymers (Basel) ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299225

RESUMO

Anthropogenic microplastics (MPs) and nanoplastics (NPs) are ubiquitous pollutants found in aquatic, food, soil and air environments. Recently, drinking water for human consumption has been considered a significant pathway for ingestion of such plastic pollutants. Most of the analytical methods developed for detection and identification of MPs have been established for particles with sizes > 10 µm, but new analytical approaches are required to identify NPs below 1 µm. This review aims to evaluate the most recent information on the release of MPs and NPs in water sources intended for human consumption, specifically tap water and commercial bottled water. The potential effects on human health of dermal exposure, inhalation, and ingestion of these particles were examined. Emerging technologies used to remove MPs and/or NPs from drinking water sources and their advantages and limitations were also assessed. The main findings showed that the MPs with sizes > 10 µm were completely removed from drinking water treatment plants (DWTPs). The smallest NP identified using pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS) had a diameter of 58 nm. Contamination with MPs/NPs can occur during the distribution of tap water to consumers, as well as when opening and closing screw caps of bottled water or when using recycled plastic or glass bottles for drinking water. In conclusion, this comprehensive study emphasizes the importance of a unified approach to detect MPs and NPs in drinking water, as well as raising the awareness of regulators, policymakers and the public about the impact of these pollutants, which pose a human health risk.

4.
Polymers (Basel) ; 14(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559911

RESUMO

The aim of this study was to obtain biocomposites consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), bacterial cellulose (BC) and α-tocopherol by a melt processing technique for potential use in biomedical applications. The melt processing and roughness of biocomposites were evaluated and compared to sample without BC. The degradation rate of PHBV/BC biocomposites was measured in phosphate buffer saline (PBS) by determining the mass variation and evidencing of thermal and structural changes by differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transformed infrared spectrometry (ATR-FTIR). The cell viability, cell morphology, cell cycle distribution and total collagen content were investigated on murine NCTC fibroblasts. Overall, the adding of BC to polyester matrix led to an adequate melt processing of biocomposites and increased surface roughness and cytocompatibility, allowing the cells to secrete the extracellular matrix (collagen) and stimulate cell proliferation. Results showed that the PHBV/BC biocomposites were favorable for long-term degradation and could be used for the design of medical devices with controlled degradability.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36360832

RESUMO

Ferrous waste by-products from the metallurgical industry have a high potential for valorization in the context of the circular economy, and can be converted to value-added products used in environmental remediation. This research reviews the latest data available in the literature with a focus on: (i) sources from which these types of iron-based wastes originate; (ii) the types of ferrous compounds that result from different industries; (iii) the different methods (with respect to the circular economy) used to convert them into products applied in water and wastewater decontamination; (iv) the harmful effects ferrous wastes can have on the environment and human health; and (v) the future perspectives for these types of waste.


Assuntos
Resíduos Industriais , Águas Residuárias , Humanos , Resíduos Industriais/análise , Água , Descontaminação , Resíduos/análise
6.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232389

RESUMO

This research emphasizes the performance of some eco-friendly carbon materials as hydrochars (HC) obtained by the hydrothermal carbonization (HTC) process applied to walnut shell (WS) biowaste. These materials display promising properties that can be used for environmental applications such as emerging pharmaceutical pollutant retention from water sources. Thus, three hydrochars coded HCWS1, HCWS2, and HCWS3 were obtained using a dynamic autoclave in specific conditions-temperature of 220 °C, autogenous pressure, 1:10 biomass-water weight ratio-and for three different reaction times, 1 h, 6 h, and 12 h. The HCWSs were characterized by means of ATR-FTIR and SEM-EDS analyses and tested as possible adsorbents to assess the removal efficiencies of some emerging pharmaceutical pollutants (paracetamol and methylene blue) by UV-VIS spectrophotometry. Kinetic and adsorption studies were carried out. The best results were obtained for the HCWS3 hydrochar. Further perspectives include an activation step of the hydrochars and their testing on other emerging pharmaceutical pollutants.


Assuntos
Poluentes Ambientais , Juglans , Acetaminofen , Adsorção , Carbono , Azul de Metileno/análise , Preparações Farmacêuticas , Temperatura , Água
7.
Materials (Basel) ; 15(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079359

RESUMO

Innovative composites based on polypropylene waste impurified cu HDPE (PPW) combined with two thermoplastic block-copolymers, namely styrene-butadiene-styrene (SBSBC) and styrene-isoprene-styrene (SISBC) block-copolymers, and up to 10 wt% nano-clay, were obtained by melt blending. SBSBC and SISBC with almost the same content of polystyrene (30 wt%) were synthesized by anionic sequential polymerization and used as compatibilizers for PPW. Optical microscopy evaluation of the PPW composites showed that the n-clay was encapsulated into the elastomer. Addition of n-clay, together with SBSBC or SISBC, increased the interphase surface of the components in the PPW composites and enhanced the superficial area/volume ratio, which led to a recycled material with improved performance. The data resulting from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical evaluation, and dynamic mechanical analysis (DMA) revealed that PPW reinforcement with n-clay and styrene-diene block-copolymers allows the obtaining of composites with favorable mechanical and thermal properties, and excellent impact strength for potential engineering applications.

8.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630932

RESUMO

The aim of this review is to bring together the main natural polymer applications for environmental remediation, as a class of nexus materials with advanced properties that offer the opportunity of integration in single or simultaneous decontamination processes. By identifying the main natural polymers derived from agro-industrial sources or monomers converted by biotechnology into sustainable polymers, the paper offers the main performances identified in the literature for: (i) the treatment of water contaminated with heavy metals and emerging pollutants such as dyes and organics, (ii) the decontamination and remediation of soils, and (iii) the reduction in the number of suspended solids of a particulate matter (PM) type in the atmosphere. Because nanotechnology offers new horizons in materials science, nanocomposite tunable polymers are also studied and presented as promising materials in the context of developing sustainable and integrated products in society to ensure quality of life. As a class of future smart materials, the natural polymers and their nanocomposites are obtained from renewable resources, which are inexpensive materials with high surface area, porosity, and high adsorption properties due to their various functional groups. The information gathered in this review paper is based on the publications in the field from the last two decades. The future perspectives of these fascinating materials should take into account the scale-up, the toxicity of nanoparticles, and the competition with food production, as well as the environmental regulations.

9.
Membranes (Basel) ; 12(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35054593

RESUMO

This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.

10.
Materials (Basel) ; 14(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885338

RESUMO

Massive amounts of industrial and agricultural water around the world are polluted by various types of contaminants that harm the environment and affect human health. Alginic acid is a very versatile green polymer used for heavy metal adsorption due to its availability, biocompatibility, low cost, and non-toxic characteristics. The aim of this paper was to prepare new low-cost hybrid composite beads using sodium alginate with treated montmorillonite and kaolin for the adsorption of copper (Cu) cations. Modified and unmodified clays were investigated by studying their morphology and elemental composition, functional groups, and mean particle size and particle size distribution. The characterization of alginate/clay hybrid composite beads was carried out by evaluating surface morphology (by scanning electron microscopy, SEM), crystallinity (by X-ray diffraction, XRD), and point of zero charge (pHpzc)(Zeta Potential Analyzer). Batch adsorption experiments of alginate/clay hybrid composite beads investigated the effect of metal concentration in the range of 1-4 mg L-1 on Cu(II) removal, adsorption kinetic for maximum 240 min, and Langmuir and Freundlich adsorption isotherms by using atomic absorption spectrometry. The pseudo-second-order kinetic model best fitted the adsorption for alginate/montmorillonite beads (R2 = 0.994), while the diffusion process was predominant for montmorillonite/kaolin beads (R2 = 0.985). The alginate/clay hybrid materials best fitted the Langmuir isotherm model.

11.
Pharmaceutics ; 13(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834354

RESUMO

In this study, lemon balm (Melissa officinalis L.) and dill (Anethum graveolens L.) essential oils (EOs) were encapsulated into collagen hydrolysates extracted from bovine tendons and rabbit skins, both mixed with chitosan (CS) by using the coaxial electrospinning technique for potential wound dressing applications. The morphology and chemical composition of the electrospun nanofibers were investigated using scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The antimicrobial activity of the dill EO and lemon EO, as well as the electrospun samples loaded with essential oils was determined by disk diffusion assay against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, and Salmonella typhimurium ATCC 14028 bacterial strains; Candida albicans ATCC 10231 and Candida glabrata ATCC 90028 yeast strains; and Aspergillus brasiliensis ATCC 9642 fungal strain. In vivo biocompatibility testing of the collagen hydrolysate-chitosan/essential oil electrospun nanofibers was based on the determination of the hematological, biochemical, and immunological profile and the evaluation of the influence produced on the oxidative stress in white Swiss mice. The synergetic effect of dill and lemon balm EOs can improve the antimicrobial activity of collagen hydrolysate-chitosan nanofibers against the most important bacterial strains. The in vivo test results suggested a good biocompatibility of electrospun samples based on collagen hydrolysate extracted from bovine tendons or rabbit skin mixed with chitosan and containing dill and/or lemon balm essential oils as encapsulated bioactive compounds.

12.
Materials (Basel) ; 14(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34443104

RESUMO

The paper addresses environmental protection by valorizing an important agri-food waste category, namely fruit and vegetables with focusing on the main characteristics regarding consumption, waste quantities, and ways for valorizing these materials. Thus, vast research was undertaken in order to emphasize the main commodities and their potential application as adsorbents for organic and inorganic pollutants. The main methods or treatment techniques applied for the valorization of eco-materials as adsorbents were presented and the principal efficiency results were indicated. The advantages and disadvantages of using these eco-materials as adsorbents in wastewater treatment were revealed and future recommendations were established. According to the international statistics, the most purchased and consumed five commodities were studied regarding waste generations as potential conversion into eco-materials with an adsorbent role for water pollutants. Thus, the performances for adsorbents based on fruit wastes (such as citrus, banana, apples, grapes, mango) and vegetable wastes (such as potatoes, tomatoes, cabbage, carrots, cauliflower, and/or broccoli) were studied and highlighted in this research.

13.
Materials (Basel) ; 14(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34300861

RESUMO

Due to its valuable compounds, food waste has been gaining attention in different applications, such as life quality and environment. Combined with circular economy requirements, a valorization method for waste, especially banana waste, was to convert them into adsorbents with advanced properties. The banana waste, after thermal treatment, was used with high removal performances (100%) for the removal of heavy metals, such as Cr, Cu, Pb, and Zn, but their small particle size makes them very hard to recover and reuse. For this reason, a biopolymeric matrix was used to incorporate the banana waste. The matrix was chosen for its remarkable properties, such as low cost, biodegradability, low carbon footprint, and reduced environmental impact. In this research, different types of materials (simple banana peel ash BPA and combined with biopolymeric matrix, ALG-BPA, CS-BPA) were prepared, characterized, and tested. The materials were characterized by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical microscopy (OM), scanning electron microscopy (SEM), and tested for the removal of metal ions from synthetic solutions using atomic absorption spectroscopy (AAS). The ALG-BPA material proved to be the most efficient in the removal of heavy metal ions from synthetic solution, reaching even 100% metal removal for Cr, Fe, Pb, and Zn, while the CS-based materials were the least efficient, presenting the best values for Cr and Fe ions with a removal efficiency of 34.14% and 28.38%, respectively. By adding BPA to CS, the adsorption properties of the material were slightly improved, but also only for Cr and Fe ions, to 37.09% and 57.78%.

14.
Polymers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203404

RESUMO

The electrospun nanosystems containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and 1 wt% Fe doped ZnO nanoparticles (NPs) (with the content of dopant in the range of 0-1 wt% Fe) deposited onto polylactic acid (PLA) film were prepared for food packaging application. They were investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), antimicrobial analysis, and X-ray photoelectron spectrometry (XPS) techniques. Migration studies conducted in acetic acid 3% (wt/wt) and ethanol 10% (v/v) food simulants as well as by the use of treated ashes with 3% HNO3 solution reveal that the migration of Zn and Fe falls into the specific limits imposed by the legislation in force. Results indicated that the PLA/PHBV/ZnO:Fex electrospun nanosystems exhibit excellent antibacterial activity against the Pseudomonas aeruginosa (ATCC-27853) due to the generation of a larger amount of perhydroxyl (˙OOH) radicals as assessed using electron paramagnetic resonance (EPR) spectroscopy coupled with a spin trapping method.

15.
Polymers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067539

RESUMO

Several recipes based on PLA, bio-plasticizers, and active agents such as vitamin E and cold-pressed rosehip seed oil encapsulated into chitosan by the emulsion method named here as chitosan modified (CS-M) were elaborated by melt compounding for food packaging applications. Resulted biocomposites have been investigated from the point of view of physical-mechanical, thermal, barrier, antimicrobial, and antioxidant properties to select the formulations with the optimum features to produce food trays and films for packaging applications. The obtained results showed that the elaborated formulations exhibit tensile strength and flexibility dependent on their composition being either rigid or flexible, as well as antimicrobial and antioxidant activity, which will potentially lead to prolonged use for food packaging. The recipe with PLA matrix and 40:60 Lapol®108 as masterbarch/polyethylene glycol (MB/PEG) bio-plasticizers ratio was distinguished by an improvement of over 100 times in terms of flexibility compared with neat PLA, while the highest antioxidant activity (36.27%) was recorded for the sample containing a CS-M and MB/PEG ratio of 60:40. An enhancement of ~50% for the water vapor barrier was recorded for PLA/CS-M_100:0 material. By modulating the MB and PEG bio-plasticizers ratio, the design of new eco-friendly food packaging materials with antimicrobial/antioxidant characteristics by using the existing technologies for processing synthetic polymers (melt mixing, compounding, pressing, thermoforming) has been successfully realized.

16.
Materials (Basel) ; 14(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068413

RESUMO

The need to recycle and develop nanomaterials from waste, and use them in environmental applications has become increasingly imperative in recent decades. A new method to convert the mill scale, a waste of the steel industry that contains large quantity of iron and low impurities into a nanoadsorbent that has the necessary properties to be used for water purification is presented. The mill scale waste was used as raw material for iron oxide nanopowder. A thorough characterization was performed in each stage of the conversion process from the mill scale powder to magnetic nanopowder including XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), BET (Brunauer, Emmett and Teller) and magnetization properties. Iron oxide nanoparticles were approximately 5-6 nm with high specific surface area and good magnetic properties. These are the necessary properties that a magnetic nanopowder must have in order to be used as nanoadsorbents in the heavy metal removal from waters. The iron oxide nanoparticles were evaluated as adsorbents for the removal of Cu, Cd and Ni ions.

17.
Materials (Basel) ; 13(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260877

RESUMO

This paper assessed the collagen glue (Col) from rabbit skin for use as a raw material in combination with different water-based dispersants of antimicrobial agents such as ZnO NPs, TiO2 NPs doped with nitrogen and Ag NPs (TiO2-N-Ag NPs), and chitosan (CS) for the production of biocompatible and antimicrobial nanofibers. The electrospun nanofibers were investigated by scanning electron microscopy (SEM), attenuated total reflectance in conjunction with Fourier-transform infrared spectroscopy (ATR-FT-IR) analyses and antioxidant activity. The biocompatibility of electrospun nanofibers was investigated on cell lines of mouse fibroblast NCTC ((clone L929) using MTT test assays. Antimicrobial activity was performed against Escherichia coli and Staphylococcus aureus bacteria and Candida albicans pathogenic fungus. Electrospun antimicrobial nanofibers based on collagen glue achieved reduction in the number of viable microorganisms against both fungi and bacteria and exhibited multiple inhibitory actions of fungal and bacterial strains. The electrospun nanofibers showed average dimension sizes in the range of 30-160 nm. The results indicated that both Col/TiO2-N-Ag NPs and Col/CS formulations are suitable for cell proliferation and may be useful for producing of nonactive wound dressings.

18.
J Chem Phys ; 153(22): 224117, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317288

RESUMO

Transferring particle charges to and from a grid plays a central role in the particle-mesh algorithms widely used to evaluate the electrostatic energy in molecular dynamics (MD) simulations. The computational cost of this transfer process represents a substantial part of the overall time required for simulation and is primarily determined by the size of the support (the set of grid nodes at which the transfer function is evaluated). The accuracy of the resulting approximation depends on the form of the transfer function, of which several have been proposed, as well as the size and shape of its support. Here, we show how to derive the transfer function that yields maximal asymptotic accuracy for a given support in the limit of fine grid resolution, finding that all such functions are splines, and we determine these functions (which we refer to as midtown splines) for a variety of choices of support to find optimally efficient transfer functions at accuracy levels relevant to MD simulations. We describe midtown splines that achieve fourth- and sixth-order accuracy in the grid spacing while requiring a support size of 32 and 88 grid nodes, respectively, compared to the 64 and 216 nodes required by the most widely used transfer functions (B-splines). At accuracy levels typically used in MD simulations, the use of midtown splines thus cuts the time required for charge spreading by roughly a factor of two.

19.
Toxics ; 8(4)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182698

RESUMO

Removing heavy metals from wastewaters is a challenging process that requires constant attention and monitoring, as heavy metals are major wastewater pollutants that are not biodegradable and thus accumulate in the ecosystem. In addition, the persistent nature, toxicity and accumulation of heavy metal ions in the human body have become the driving force for searching new and more efficient water treatment technologies to reduce the concentration of heavy metal in waters. Because the conventional techniques will not be able to keep up with the growing demand for lower heavy metals levels in drinking water and wastewaters, it is becoming increasingly challenging to implement technologically advanced alternative water treatments. Nanotechnology offers a number of advantages compared to other methods. Nanomaterials are more efficient in terms of cost and volume, and many process mechanisms are better and faster at nanoscale. Although nanomaterials have already proved themselves in water technology, there are specific challenges related to their stability, toxicity and recovery, which led to innovations to counteract them. Taking into account the multidisciplinary research of water treatment for the removal of heavy metals, the present review provides an updated report on the main technologies and materials used for the removal of heavy metals with an emphasis on nanoscale materials and processes involved in the heavy metals removal and detection.

20.
Materials (Basel) ; 13(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664281

RESUMO

Copper matrix nanocomposites reinforced with magnetite nanoparticles were developed using powder metallurgy. Various processing parameters were taken into consideration, such as magnetite content, compaction pressure, sintering time and temperature. The nanopowder blends were compacted using various uniaxial pressures and sintered at 650 and 800 °C in order to study the influence of processing parameters on morphology, structure, thermal, magnetic and mechanical properties. The structure and morphology of the nanocomposites analyzed by X-ray diffraction (XRD), bright field transmission electron microscopy (TEMBF) and scanning electron microscopy (SEM) showed that sintered composites retained the nanoscale characteristics of the initial Fe3O4 and Cu nanopowders. These nanocomposites have good cold-rolling deformability and Vickers micro-hardness. The Cu-xFe3O4 nanocomposites have thermal and magnetic properties that make them suitable for electronical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...