Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(7): 071602, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427865

RESUMO

We study how isotropic and homogeneous far-from-equilibrium quantum systems relax to nonthermal attractors, which are of interest for cold atoms and nuclear collisions. We demonstrate that a first-order ordinary differential equation governs the self-similar approach to nonthermal attractors, i.e., the prescaling. We also show that certain natural scaling-breaking terms induce logarithmically slow corrections that prevent the scaling exponents from reaching the constant values during the system's lifetime. We propose that, analogously to hydrodynamic attractors, the appropriate mathematical structure to describe such dynamics is the transseries. We verify our analytic predictions with state-of-the-art 2PI simulations of the large-N vector model and QCD kinetic theory.

2.
Phys Rev Lett ; 130(3): 031602, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763399

RESUMO

We study the dynamics of perturbations around nonthermal fixed points associated with universal scaling phenomena in quantum many-body systems far from equilibrium. For an N-component scalar quantum field theory in 3+1 space-time dimensions, we determine the stability scaling exponents using a self-consistent large-N expansion to next-to-leading order. Our analysis reveals the presence of both stable and unstable perturbations, the latter leading to quasiexponential deviations from the fixed point in the infrared. We identify a tower of far-from-equilibrium quasiparticle states and their dispersion relations by computing the spectral function. With the help of linear response theory, we demonstrate that unstable dynamics arises from a competition between elastic scattering processes among the quasiparticle states. What ultimately renders the fixed point dynamically attractive is the phenomenon of a "scaling instability," which is the universal scaling of the unstable regime toward the infrared due to a self-similar quasiparticle cascade. Our results provide ab initio understanding of emergent stability properties in self-organized scaling phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...