Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21781, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065965

RESUMO

Malignant pleural effusions (MPEs) can be utilized as liquid biopsy for phenotyping malignant cells and for precision immunotherapy, yet MPEs are inadequately studied at the single-cell proteomic level. Here we leverage mass cytometry to interrogate immune and epithelial cellular profiles of primary tumors and pleural effusions (PEs) from early and late-stage non-small cell lung cancer (NSCLC) patients, with the goal of assessing epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in patient specimens. By using the EMT-MET reference map PHENOSTAMP, we observe a variety of EMT states in cytokeratin positive (CK+) cells, and report for the first time MET-enriched CK+ cells in MPEs. We show that these states may be relevant to disease stage and therapy response. Furthermore, we found that the fraction of CD33+ myeloid cells in PEs was positively correlated to the fraction of CK+ cells. Longitudinal analysis of MPEs drawn 2 months apart from a patient undergoing therapy, revealed that CK+ cells acquired heterogeneous EMT features during treatment. We present this work as a feasibility study that justifies deeper characterization of EMT and MET states in malignant cells found in PEs as a promising clinical platform to better evaluate disease progression and treatment response at a personalized level.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteômica , Transição Epitelial-Mesenquimal/fisiologia , Derrame Pleural Maligno/tratamento farmacológico , Biópsia Líquida
2.
Clin Chem ; 67(3): 534-542, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33393992

RESUMO

BACKGROUND: Liquid biopsy circulating tumor DNA (ctDNA) mutational analysis holds great promises for precision medicine targeted therapy and more effective cancer management. However, its wide adoption is hampered by high cost and long turnaround time of sequencing assays, or by inadequate analytical sensitivity of existing portable nucleic acid tests to mutant allelic fraction in ctDNA. METHODS: We developed a ctDNA Epidermal Growth Factor Receptor (EGFR) mutational assay using giant magnetoresistive (GMR) nanosensors. This assay was validated in 36 plasma samples of non-small cell lung cancer patients with known EGFR mutations. We assessed therapy response through follow-up blood draws, determined concordance between the GMR assay and radiographic response, and ascertained progression-free survival of patients. RESULTS: The GMR assay achieved analytical sensitivities of 0.01% mutant allelic fraction. In clinical samples, the assay had 87.5% sensitivity (95% CI = 64.0-97.8%) for Exon19 deletion and 90% sensitivity (95% CI = 69.9-98.2%) for L858R mutation with 100% specificity; our assay detected T790M resistance with 96.3% specificity (95% CI = 81.7-99.8%) with 100% sensitivity. After 2 weeks of therapy, 10 patients showed disappearance of ctDNA by GMR (predicted responders), whereas 3 patients did not (predicted nonresponders). These predictions were 100% concordant with radiographic response. Kaplan-Meier analysis showed responders had significantly (P < 0.0001) longer PFS compared to nonresponders (N/A vs. 12 weeks, respectively). CONCLUSIONS: The GMR assay has high diagnostic sensitivity and specificity and is well suited for detecting EGFR mutations at diagnosis and noninvasively monitoring treatment response at the point-of-care.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante/genética , Análise Mutacional de DNA/métodos , Monitoramento de Medicamentos/métodos , Receptores ErbB/genética , Neoplasias Pulmonares , Acrilamidas/uso terapêutico , Idoso , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Humanos , Biópsia Líquida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores
3.
Small Methods ; 1(9)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30740513

RESUMO

Neutrophils have a critical role in regulating the immune system. The immune system is compromised during chemotherapy, increasing infection risks and imposing a need for regular monitoring of neutrophil counts. Although commercial hematology analyzers are currently used in clinical practice for neutrophil counts, they are only available in clinics and hospitals, use large blood volumes, and are not available at the point of care (POC). Additionally, phlebotomy and blood processing require trained personnel, where patients are often admitted to hospitals when the infections are at late stage due to lack of frequent monitoring. Here, a reliable method is presented that selectively captures and quantifies white blood cells (WBCs) and neutrophils from a finger prick volume of whole blood by integrating microfluidics with high-resolution imaging algorithms. The platform is compact, portable, and easy to use. It captures and quantifies WBCs and neutrophils with high efficiency (>95%) and specificity (>95%) with an overall 4.2% bias compared to standard testing. The results from a small cohort of patients (N = 11 healthy, N = 5 lung and kidney cancer) present a unique disposable cell counter, demonstrating the ability of this tool to monitor neutrophil and WBC counts within clinical or in resource-constrained environments.

4.
J Glaucoma ; 23(8 Suppl 1): S24-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25275900

RESUMO

Exfoliation syndrome (XFS) is considered to be a disease of extracellular matrix. Here we review key experimental evidence of aberrations in structure, expression, and function of glycoproteins, complex carbohydrates, and glycosaminoglycans found in extracellular matrix components forming exfoliation material in patients presenting with XFS. We hypothesize that certain components of the accumulating exfoliation material can become immunogenic, and multiple natural antibodies or autoantibodies are generated. Anti-glycan antibodies (AGAs) can be captured on Printed Glycan Array. Our preliminary results show robust immunoprofiles of AGAs in sera of patients with XFS, and the significant presence of AGAs in aqueous humor of these patients. These findings offer insight into the dynamics of AGAs during the development of XFS that could lead to the identification of the AGA-based XFS immuno-signature.


Assuntos
Autoanticorpos/sangue , Síndrome de Exfoliação/metabolismo , Matriz Extracelular/metabolismo , Glicômica , Polissacarídeos/imunologia , Síndrome de Exfoliação/imunologia , Proteínas da Matriz Extracelular/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...