Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-477244

RESUMO

We computationally investigated the role of the Omicron RBD mutations on its structure and interactions with ACE2. Our results suggest that, compared to the WT and Delta, the mutations in the Omicron RBD facilitate a more efficient RBD opening and ACE2 attachment. These effects, combined with antibody evasion, may contribute to its dominance over Delta. While the Omicron RBD escapes most antibodies from prior infections, epitope analysis shows that it harbors sequences with significantly improved antigenicity compared to other variants, suggesting more potent Omicron-specific neutralizing antibodies.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474028

RESUMO

In addition to the ACE2 receptor, SARS-CoV-2 binds to integrins to gain host cell entry and trigger pro-inflammatory integrin-mediated signalling cascades. Integrins, therefore, are likely candidates for a dual-receptor mechanism with ACE2 to explain the increased infectivity seen in SARS-CoV-2 models. As integrins are primarily expressed in vasculature and persistent vasculopathy is seen in COVID-19, examining the role of endothelial integrin involvement is crucial in uncovering the pathophysiology of SARS-CoV-2.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-457577

RESUMO

Upon infection, foreign antigenic proteins stimulate the hosts immune system to produce antibodies targeting the pathogen. These antibodies bind to regions on the antibody called epitopes. Structural similarity (molecular mimicry) of epitopes between an infecting pathogen and host proteins or other pathogenic proteins the host has previously encountered can impact the host immune response to the pathogen and may lead to cross-reactive antibodies. The ability to identify potential regions of molecular mimicry in a pathogen can illuminate immune effects which are especially important to pathogen treatment and vaccine design. Here we present Epitopedia, a software pipeline that facilitates the identification of regions that may exhibit potential three-dimensional molecular mimicry between an antigenic pathogen protein and known immune epitopes as catalogued by the immune epitope database (IEDB). Epitopedia is open-source software released under the MIT license and is freely available on GitHub, including a Docker container with all other software dependencies preinstalled. We performed an analysis describing how various secondary structure states, identity between pentapeptide pairs, and identity between the parent sequences of pentapeptide pairs affects RMSD. We found that pentapeptides pairs in a helical conformation had considerably lower RMSD values than those in Extended or Coil conformations. We also found that RMSD is significantly increased when pentapeptide pairs are from non-homologous sequences.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-452576

RESUMO

While the vaccination efforts against SARS-CoV-2 infections are ongoing worldwide, new genetic variants of the virus are emerging and spreading. Following the initial surges of the Alpha (B.1.1.7) and the Beta (B.1.351) variants, a more infectious Delta variant (B.1.617.2) is now surging, further deepening the health crises caused by the pandemic. The sharp rise in cases attributed to the Delta variant has made it especially disturbing and is a variant of concern. Fortunately, current vaccines offer protection against known variants of concern, including the Delta variant. However, the Delta variant has exhibited some ability to dodge the immune system as it is found that neutralizing antibodies from prior infections or vaccines are less receptive to binding with the Delta spike protein. Here, we investigated the structural changes caused by the mutations in the Delta variants receptor-binding interface and explored the effects on binding with the ACE2 receptor as well as with neutralizing antibodies. We find that the receptor-binding {beta}-loop-{beta} motif adopts an altered but stable conformation causing separation in some of the antibody binding epitopes. Our study shows reduced binding of neutralizing antibodies and provides a possible mechanism for the immune evasion exhibited by the Delta variant.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-153387

RESUMO

Many efforts to design and screen therapeutics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) have focused on inhibiting viral cell entry by disrupting ACE2 binding with the SARS-CoV-2 spike protein. This work focuses on inhibiting SARS-CoV-2 entry through a hypothesized 5{beta}1 integrin-based mechanism, and indicates that inhibiting the spike protein interaction with 5{beta}1 integrin (+/- ACE2), and the interaction between 5{beta}1 integrin and ACE2 using a molecule ATN-161 represents a promising approach to treat COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA