Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0068724, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864628

RESUMO

Mycoplasma bovis is an important emerging pathogen of cattle and bison, but our understanding of the genetic basis of its interactions with its host is limited. The aim of this study was to identify genes of M. bovis required for interaction and survival in association with host cells. One hundred transposon-induced mutants of the type strain PG45 were assessed for their capacity to survive and proliferate in Madin-Darby bovine kidney cell cultures. The growth of 19 mutants was completely abrogated, and 47 mutants had a prolonged doubling time compared to the parent strain. All these mutants had a similar growth pattern to the parent strain PG45 in the axenic media. Thirteen genes previously classified as dispensable for the axenic growth of M. bovis were found to be essential for the growth of M. bovis in association with host cells. In most of the mutants with a growth-deficient phenotype, the transposon was inserted into a gene involved in transportation or metabolism. This included genes coding for ABC transporters, proteins related to carbohydrate, nucleotide and protein metabolism, and membrane proteins essential for attachment. It is likely that these genes are essential not only in vitro but also for the survival of M. bovis in infected animals. IMPORTANCE: Mycoplasma bovis causes chronic bronchopneumonia, mastitis, arthritis, keratoconjunctivitis, and reproductive tract disease in cattle around the globe and is an emerging pathogen in bison. Control of mycoplasma infections is difficult in the absence of appropriate antimicrobial treatment or effective vaccines. A comprehensive understanding of host-pathogen interactions and virulence factors is important to implement more effective control methods against M. bovis. Recent studies of other mycoplasmas with in vitro cell culture models have identified essential virulence genes of mycoplasmas. Our study has identified genes of M. bovis required for survival in association with host cells, which will pave the way to a better understanding of host-pathogen interactions and the role of specific genes in the pathogenesis of disease caused by M. bovis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...