Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
Int J Audiol ; 63(3): 221-225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36811451

RESUMO

OBJECTIVE: The clinical audiology test battery often involves playing physically simple sounds with questionable ecological value to the listener. In this technical report, we revisit how valid this approach is using an automated, involuntary auditory response; the acoustic reflex threshold (ART). DESIGN: The ART was estimated four times in each individual in a quasi-random ordering of task conditions. The baseline condition (referred to as Neutral) measured the ART following a standard clinical practice. Three experimental conditions were then used in which a secondary task was performed whilst the reflex was measured: auditory attention, auditory distraction and visual distraction tasks. STUDY SAMPLE: Thirty-eight participants (27 males) with a mean age of 23 years were tested. All participants were audiometrically healthy. RESULTS: The ART was elevated when a visual task was performed at the same time as the measurements were taken. Performing an auditory task did not affect the ART. CONCLUSIONS: These data indicate that simple audiometric measures widely used in the clinic, can be affected by central, non-auditory processes even in healthy, normal-hearing volunteers. The role of cognition and attention on auditory responses will become ever more important in the coming years.


Assuntos
Testes Auditivos , Reflexo Acústico , Adulto , Humanos , Masculino , Adulto Jovem , Estimulação Acústica , Acústica , Audiometria , Limiar Auditivo/fisiologia , Reflexo Acústico/fisiologia , Feminino
3.
Int J Audiol ; : 1-8, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946458

RESUMO

OBJECTIVE: Best-practice guidelines recommend the use of hearing aid verification in children; however, this is not always performed. Automated hearing aid verification has been reported to be more accurate and efficient than manual verification in adults, but it is not known if this transfers to the paediatric population. DESIGN: A within-group design compared manual and automated hearing aid verification on four measures; fitting accuracy, prescription targets, completion time, and the speech intelligibility index. SAMPLE: Twenty paediatric patient hearing aid profiles (M = 8.25 years) with unilateral or bilateral hearing aids. RESULTS: A Wilcoxon-signed rank test indicated manual verification achieved a significantly closer match to target at 0.5 kHz, by an average of 1 dB. There were no significant differences at any other frequency. Across 80 comparisons (four frequencies measured in 20 listeners), 82.5% of automated verifications were identical to, or within 1 dB of, manual verifications. A paired-samples t-test confirmed automated verification to be an average of 91.9 seconds faster than manual verification. CONCLUSION: Automated verification was able to provide an accurate match to target within recommended tolerances for hearing aid fittings and was significantly quicker than manual verification. These data suggest that automated verification of hearing aids could play a role in paediatric audiological management.

5.
J Speech Lang Hear Res ; 66(3): 1085-1109, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802819

RESUMO

PURPOSE: Many workers in developing countries are exposed to unsafe occupational noise due to inadequate health and safety practices. We tested the hypotheses that occupational noise exposure and aging affect speech-perception-in-noise (SPiN) thresholds, self-reported hearing ability, tinnitus presence, and hyperacusis severity among Palestinian workers. METHOD: Palestinian workers (N = 251, aged 18-70 years) without diagnosed hearing or memory impairments completed online instruments including a noise exposure questionnaire; forward and backward digit span tests; hyperacusis questionnaire; the short-form Speech, Spatial and Qualities of Hearing Scale (SSQ12); the Tinnitus Handicap Inventory; and a digits-in-noise (DIN) test. Hypotheses were tested via multiple linear and logistic regression models, including age and occupational noise exposure as predictors, and with sex, recreational noise exposure, cognitive ability, and academic attainment as covariates. Familywise error rate was controlled across all 16 comparisons using the Bonferroni-Holm method. Exploratory analyses evaluated effects on tinnitus handicap. A comprehensive study protocol was preregistered. RESULTS: Nonsignificant trends of poorer SPiN performance, poorer self-reported hearing ability, greater prevalence of tinnitus, greater tinnitus handicap, and greater severity of hyperacusis as a function of higher occupational noise exposure were observed. Greater hyperacusis severity was significantly predicted by higher occupational noise exposure. Aging was significantly associated with higher DIN thresholds and lower SSQ12 scores, but not with tinnitus presence, tinnitus handicap, or hyperacusis severity. CONCLUSIONS: Workers in Palestine may suffer from auditory effects of occupational noise and aging despite no formal diagnosis. These findings highlight the importance of occupational noise monitoring and hearing-related health and safety practices in developing countries. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.22056701.


Assuntos
Perda Auditiva , Percepção da Fala , Zumbido , Humanos , Zumbido/diagnóstico , Zumbido/epidemiologia , Hiperacusia/epidemiologia , Hiperacusia/diagnóstico , Fala , Árabes , Perda Auditiva/epidemiologia
6.
Hear Res ; 427: 108663, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502543

RESUMO

Noise exposure may damage the synapses that connect inner hair cells with auditory nerve fibers, before outer hair cells are lost. In humans, this cochlear synaptopathy (CS) is thought to decrease the fidelity of peripheral auditory temporal coding. In the current study, the primary hypothesis was that higher middle ear muscle reflex (MEMR) thresholds, as a proxy measure of CS, would be associated with smaller values of the binaural intelligibility level difference (BILD). The BILD, which is a measure of binaural temporal coding, is defined here as the difference in thresholds between the diotic and the antiphasic versions of the digits in noise (DIN) test. This DIN BILD may control for factors unrelated to binaural temporal coding such as linguistic, central auditory, and cognitive factors. Fifty-six audiometrically normal adults (34 females) aged 18 - 30 were tested. The test battery included standard pure tone audiometry, tympanometry, MEMR using a 2 kHz elicitor and 226 Hz and 1 kHz probes, the Noise Exposure Structured Interview, forward digit span test, extended high frequency (EHF) audiometry, and diotic and antiphasic DIN tests. The study protocol was pre-registered prior to data collection. MEMR thresholds did not predict the DIN BILD. Secondary analyses showed no association between MEMR thresholds and the individual diotic and antiphasic DIN thresholds. Greater lifetime noise exposure was non-significantly associated with higher MEMR thresholds, larger DIN BILD values, and lower (better) antiphasic DIN thresholds, but not with diotic DIN thresholds, nor with EHF thresholds. EHF thresholds were associated with neither MEMR thresholds nor any of the DIN outcomes, including the DIN BILD. Results provide no evidence that young, audiometrically normal people incur CS with impacts on binaural temporal processing.


Assuntos
Orelha Média , Reflexo , Feminino , Humanos , Adulto Jovem , Estimulação Acústica , Limiar Auditivo , Músculos , Audiometria de Tons Puros
7.
Front Aging Neurosci ; 14: 877588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813954

RESUMO

Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.

8.
Front Aging Neurosci ; 14: 890010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711902

RESUMO

Animal research shows that aging and excessive noise exposure damage cochlear outer hair cells, inner hair cells, and the synapses connecting inner hair cells with the auditory nerve. This may translate into auditory symptoms such as difficulty understanding speech in noise, tinnitus, and hyperacusis. The current study, using a novel online approach, assessed and quantified the effects of lifetime noise exposure and aging on (i) speech-perception-in-noise (SPiN) thresholds, (ii) self-reported hearing ability, and (iii) the presence of tinnitus. Secondary aims involved documenting the effects of lifetime noise exposure and aging on tinnitus handicap and the severity of hyperacusis. Two hundred and ninety-four adults with no past diagnosis of hearing or memory impairments were recruited online. Participants were assigned into two groups: 217 "young" (age range: 18-35 years, females: 151) and 77 "older" (age range: 50-70 years, females: 50). Participants completed a set of online instruments including an otologic health and demographic questionnaire, a dementia screening tool, forward and backward digit span tests, a noise exposure questionnaire, the Khalfa hyperacusis questionnaire, the short-form of the Speech, Spatial, and Qualities of Hearing scale, the Tinnitus Handicap Inventory, a digits-in-noise test, and a Coordinate Response Measure speech-perception test. Analyses controlled for sex and cognitive function as reflected by the digit span. A detailed protocol was pre-registered, to guard against "p-hacking" of this extensive dataset. Lifetime noise exposure did not predict SPiN thresholds, self-reported hearing ability, or the presence of tinnitus in either age group. Exploratory analyses showed that worse hyperacusis scores, and a greater prevalence of tinnitus, were associated significantly with high lifetime noise exposure in the young, but not in the older group. Age was a significant predictor of SPiN thresholds and the presence of tinnitus, but not of self-reported hearing ability, tinnitus handicap, or severity of hyperacusis. Consistent with several lab studies, our online-derived data suggest that older adults with no diagnosis of hearing impairment have a poorer SPiN ability and a higher risk of tinnitus than their younger counterparts. Moreover, lifetime noise exposure may increase the risk of tinnitus and the severity of hyperacusis in young adults with no diagnosis of hearing impairment.

9.
Trends Hear ; 24: 2331216520972860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33357018

RESUMO

The acoustic reflex (AR) shows promise as an objective test for the presence of cochlear synaptopathy in rodents. The AR has also been shown to be reduced in humans with tinnitus compared to those without. The aim of the present study was twofold: (a) to determine if AR strength (quantified as both threshold and growth) varied with lifetime noise exposure, and thus provided an estimate of the degree of synaptopathy and (b) to identify which factors should be considered when using the AR as a quantitative measure rather than just present/absent responses. AR thresholds and growth functions were measured using ipsilateral and contralateral, broadband and tonal elicitors in adults with normal hearing and varying levels of lifetime noise exposure. Only the clinical standard 226 Hz probe tone was used. AR threshold and growth were not related to lifetime noise exposure, suggesting that routine clinical AR measures are not a sensitive measure when investigating the effects of noise exposure in audiometrically normal listeners. Our secondary, exploratory analyses revealed that AR threshold and growth were significantly related to middle-ear compliance. Listeners with higher middle-ear compliance (though still in the clinically normal range) showed lower AR thresholds and steeper AR growth functions. Furthermore, there was a difference in middle-ear compliance between the sexes, with males showing higher middle-ear compliance values than females. Therefore, it may be necessary to factor middle-ear compliance values into any analysis that uses the AR as an estimate of auditory function.


Assuntos
Audição , Reflexo Acústico , Estimulação Acústica , Adulto , Limiar Auditivo , Cóclea , Feminino , Humanos
10.
Int J Audiol ; 59(11): 823-827, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32643465

RESUMO

OBJECTIVE: To encourage researchers to perform high-frequency threshold estimation using a technique outlined by Rieke and colleagues, described as fixed-level frequency threshold estimation. Their method used a Bekesy-style roving tone to estimate the highest audible frequency of a listener. The tone was fixed in its intensity (SPL) and changed in frequency as the participant indicated whether they could perceive the tone, or not. This was developed specifically for ototoxicity monitoring in the extended high-frequency region. Rieke and colleagues established that this approach to measuring hearing thresholds is both fast and reliable. DESIGN: The current article extends this approach to using a simple PC-soundcard-transducer setup and the method of limits to rapidly establish the highest audible frequency of a listener.Study sample: 24 listeners performed standard and fixed-level audiometry in the extended high-frequency range. RESULTS: The method described is rapid and reliable and a single summary metric is obtained for each listener. CONCLUSIONS: The advantage of the described approach over standard pure-tone audiometry in the extended high-frequency range is the time taken, the ability to avoid missing data points and the risk of distortions or electrical noise when close to maximal system output.


Assuntos
Audição , Ruído , Audiometria de Tons Puros , Limiar Auditivo , Humanos
11.
Hear Res ; 395: 108021, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631495

RESUMO

Musicians are at risk of hearing loss due to prolonged noise exposure, but they may also be at risk of early sub-clinical hearing damage, such as cochlear synaptopathy. In the current study, we investigated the effects of noise exposure on electrophysiological, behavioral and self-report correlates of hearing damage in young adult (age range = 18-27 years) musicians and non-musicians with normal audiometric thresholds. Early-career musicians (n = 76) and non-musicians (n = 47) completed a test battery including the Noise Exposure Structured Interview, pure-tone audiometry (PTA; 0.25-8 kHz), extended high-frequency (EHF; 12 and 16 kHz) thresholds, otoacoustic emissions (OAEs), auditory brainstem responses (ABRs), speech perception in noise (SPiN), and self-reported tinnitus, hyperacusis and hearing in noise difficulties. Total lifetime noise exposure was similar between musicians and non-musicians, the majority of which could be accounted for by recreational activities. Musicians showed significantly greater ABR wave I/V ratios than non-musicians and were also more likely to report experience of - and/or more severe - tinnitus, hyperacusis and hearing in noise difficulties, irrespective of noise exposure. A secondary analysis revealed that individuals with the highest levels of noise exposure had reduced outer hair cell function compared to individuals with the lowest levels of noise exposure, as measured by OAEs. OAE level was also related to PTA and EHF thresholds. High levels of noise exposure were also associated with a significant increase in ABR wave V latency, but only for males, and a higher prevalence and severity of hyperacusis. These findings suggest that there may be sub-clinical effects of noise exposure on various hearing metrics even at a relatively young age, but do not support a link between lifetime noise exposure and proxy measures of cochlear synaptopathy such as ABR wave amplitudes and SPiN. Closely monitoring OAEs, PTA and EHF thresholds when conventional PTA is within the clinically 'normal' range could provide a useful early metric of noise-induced hearing damage. This may be particularly relevant to early-career musicians as they progress through a period of intensive musical training, and thus interventions to protect hearing longevity may be vital.


Assuntos
Perda Auditiva Provocada por Ruído , Música , Adolescente , Adulto , Audiometria de Tons Puros , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Audição , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/etiologia , Humanos , Hiperacusia/diagnóstico , Hiperacusia/etiologia , Masculino , Emissões Otoacústicas Espontâneas , Autorrelato , Zumbido/diagnóstico , Zumbido/etiologia , Adulto Jovem
12.
J Acoust Soc Am ; 147(2): 1284, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113270

RESUMO

The signal processing used to increase intelligibility within the hearing-impaired listener introduces distortions in the modulation patterns of a signal. Trade-offs have to be made between improved audibility and the loss of fidelity. Acoustic hearing impairment can cause reduced access to temporal fine structure (TFS), while cochlear implant processing, used to treat profound hearing impairment, has reduced ability to convey TFS, hence forcing greater reliance on modulation cues. Target speech mixed with a competing talker was split into 8-22 frequency channels. From each channel, separate low-rate (EmodL, <16 Hz) and high-rate (EmodH, <300 Hz) versions of the envelope modulation were extracted, which resulted in low or high intelligibility, respectively. The EModL modulations were preserved in channel valleys and cross-faded to EModH in channel peaks. The cross-faded signal modulated a tone carrier in each channel. The modulated carriers were summed across channels and presented to hearing aid (HA) and cochlear implant users. Their ability to access high-rate modulation cues and the dynamic range of this access was assessed. Clinically fitted hearing aids resulted in 10% lower intelligibility than simulated high-quality aids. Encouragingly, cochlear implantees were able to extract high-rate information over a dynamic range similar to that for the HA users.


Assuntos
Implantes Cocleares , Percepção da Fala , Estimulação Acústica , Limiar Auditivo , Sinais (Psicologia) , Inteligibilidade da Fala
13.
Ear Hear ; 41(3): 561-575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31469700

RESUMO

OBJECTIVES: Diabetes mellitus (DM) is associated with a variety of sensory complications. Very little attention has been given to auditory neuropathic complications in DM. The aim of this study was to determine whether type 1 DM (T1DM) affects neural coding of the rapid temporal fluctuations of sounds, and how any deficits may impact on behavioral performance. DESIGN: Participants were 30 young normal-hearing T1DM patients, and 30 age-, sex-, and audiogram-matched healthy controls. Measurements included electrophysiological measures of auditory nerve and brainstem function using the click-evoked auditory brainstem response, and of brainstem neural temporal coding using the sustained frequency-following response (FFR); behavioral tests of temporal coding (interaural phase difference discrimination and the frequency difference limen); tests of speech perception in noise; and self-report measures of auditory disability using the Speech, Spatial and Qualities of Hearing Scale. RESULTS: There were no significant differences between T1DM patients and controls in the auditory brainstem response. However, the T1DM group showed significantly reduced FFRs to both temporal envelope and temporal fine structure. The T1DM group also showed significantly higher interaural phase difference and frequency difference limen thresholds, worse speech-in-noise performance, as well as lower overall Speech, Spatial and Qualities scores than the control group. CONCLUSIONS: These findings suggest that T1DM is associated with degraded neural temporal coding in the brainstem in the absence of an elevation in audiometric threshold, and that the FFR may provide an early indicator of neural damage in T1DM, before any abnormalities can be identified using standard clinical tests. However, the relation between the neural deficits and the behavioral deficits is uncertain.


Assuntos
Diabetes Mellitus Tipo 1 , Percepção da Fala , Estimulação Acústica , Percepção Auditiva , Limiar Auditivo , Nervo Coclear , Diabetes Mellitus Tipo 1/complicações , Potenciais Evocados Auditivos do Tronco Encefálico , Humanos
14.
Neuroimage ; 204: 116239, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586673

RESUMO

In animal models, exposure to high noise levels can cause permanent damage to hair-cell synapses (cochlear synaptopathy) for high-threshold auditory nerve fibers without affecting sensitivity to quiet sounds. This has been confirmed in several mammalian species, but the hypothesis that lifetime noise exposure affects auditory function in humans with normal audiometric thresholds remains unconfirmed and current evidence from human electrophysiology is contradictory. Here we report the auditory brainstem response (ABR), and both transient (stimulus onset and offset) and sustained functional magnetic resonance imaging (fMRI) responses throughout the human central auditory pathway across lifetime noise exposure. Healthy young individuals aged 25-40 years were recruited into high (n = 32) and low (n = 30) lifetime noise exposure groups, stratified for age, and balanced for audiometric threshold up to 16 kHz fMRI demonstrated robust broadband noise-related activity throughout the auditory pathway (cochlear nucleus, superior olivary complex, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body and auditory cortex). fMRI responses in the auditory pathway to broadband noise onset were significantly enhanced in the high noise exposure group relative to the low exposure group, differences in sustained fMRI responses did not reach significance, and no significant group differences were found in the click-evoked ABR. Exploratory analyses found no significant relationships between the neural responses and self-reported tinnitus or reduced sound-level tolerance (symptoms associated with synaptopathy). In summary, although a small effect, these fMRI results suggest that lifetime noise exposure may be associated with central hyperactivity in young adults with normal hearing thresholds.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Neuroimagem Funcional , Ruído/efeitos adversos , Adulto , Córtex Auditivo/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Núcleo Coclear/diagnóstico por imagem , Núcleo Coclear/fisiologia , Eletroencefalografia , Feminino , Corpos Geniculados/diagnóstico por imagem , Corpos Geniculados/fisiologia , Humanos , Colículos Inferiores/diagnóstico por imagem , Colículos Inferiores/fisiologia , Imageamento por Ressonância Magnética , Masculino , Complexo Olivar Superior/diagnóstico por imagem , Complexo Olivar Superior/fisiologia
15.
Trends Hear ; 23: 2331216519874165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516095

RESUMO

The acoustic reflex (AR), a longstanding component of the audiological test battery, has received renewed attention in the context of noise-induced cochlear synaptopathy-the destruction of synapses between inner hair cells and auditory nerve fibers. Noninvasive proxy measures of synaptopathy are widely sought, and AR thresholds (ARTs) correlate closely with synaptic survival in rodents. However, measurement in humans at high stimulus frequencies-likely important when testing for noise-induced pathology-can be challenging; reflexes at 4 kHz are frequently absent or occur only at high stimulus levels, even in young people with clinically normal audiograms. This phenomenon may partly reflect differences across stimulus frequency in the temporal characteristics of the response; later onset of the response, earlier onset of adaptation, and higher rate of adaptation have been observed at 4 kHz than at 1 kHz. One temporal aspect of the response that has received little attention is the interstimulus interval (ISI); inadequate duration of ISI might lead to incomplete recovery of the response between successive presentations and consequent response fatigue. This research aimed to test for effects of ISI on ARTs in normally hearing young humans, measured at 1 and 4 kHz. Contrary to our hypotheses, increasing ISIs from 2.5 to 8.5 s did not reduce ART level, nor raise ART reliability. Results confirm that clinically measured ARTs-including those at 4 kHz-can exhibit excellent reliability and that relatively short (2.5 s) ISIs are adequate for the measurement of sensitive and reliable ARTs.


Assuntos
Estimulação Acústica , Limiar Auditivo/fisiologia , Reflexo Acústico/fisiologia , Adolescente , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição , Testes Auditivos , Humanos , Ruído , Reprodutibilidade dos Testes , Sinapses
16.
Trends Hear ; 23: 2331216519877301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31558119

RESUMO

Although there is strong histological evidence for age-related synaptopathy in humans, evidence for the existence of noise-induced cochlear synaptopathy in humans is inconclusive. Here, we sought to evaluate the relative contributions of age and noise exposure to cochlear synaptopathy using a series of electrophysiological and behavioral measures. We extended an existing cohort by including 33 adults in the age range 37 to 60, resulting in a total of 156 participants, with the additional older participants resulting in a weakening of the correlation between lifetime noise exposure and age. We used six independent regression models (corrected for multiple comparisons), in which age, lifetime noise exposure, and high-frequency audiometric thresholds were used to predict measures of synaptopathy, with a focus on differential measures. The models for auditory brainstem responses, envelope-following responses, interaural phase discrimination, and the co-ordinate response measure of speech perception were not statistically significant. However, both age and noise exposure were significant predictors of performance on the digit triplet test of speech perception in noise, with greater noise exposure (unexpectedly) predicting better performance in the 80 dB sound pressure level (SPL) condition and greater age predicting better performance in the 40 dB SPL condition. Amplitude modulation detection thresholds were also significantly predicted by age, with older listeners performing better than younger listeners at 80 dB SPL. Overall, the results are inconsistent with the predicted effects of synaptopathy.


Assuntos
Cóclea/patologia , Perda Auditiva Provocada por Ruído/patologia , Estimulação Acústica , Adulto , Fatores Etários , Audiometria de Tons Puros , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ruído , Percepção da Fala
18.
Hear Res ; 375: 34-43, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30765219

RESUMO

Investigations of cochlear synaptopathy in living humans rely on proxy measures of auditory nerve function. Numerous procedures have been developed, typically based on the auditory brainstem response (ABR), envelope-following response (EFR), or middle-ear-muscle reflex (MEMR). Validation is challenging, due to the absence of a gold-standard measure in humans. Some metrics correlate with synaptic survival in animal models, but translation between species is not straightforward; measurements in humans are likely to reflect greater error and greater variability from non-synaptopathic sources. The present study assessed the reliability of seven measures, as well as testing for correlations between them. Thirty-one young women with normal audiograms underwent repeated measurements of ABR wave I amplitude, ABR wave I growth, ABR wave V latency shift in noise, EFR amplitude, EFR growth with stimulus modulation depth, MEMR threshold, and an MEMR across-frequency difference measure. Intraclass correlation coefficients for ABR wave I amplitude, EFR amplitude, and MEMR threshold ranged from 0.85 to 0.93, suggesting that such tests can yield highly reliable results, given careful measurement techniques. The ABR and EFR difference measures exhibited only poor-to-moderate reliability. No significant correlations, nor any consistent trends, were observed between the various measures, providing no indication that these metrics reflect the same underlying physiological processes. Findings suggest that many proxy measures of cochlear synaptopathy should be regarded with caution, at least when employed in young adults with normal audiograms.


Assuntos
Cóclea/patologia , Doenças Cocleares/patologia , Adolescente , Adulto , Animais , Audiometria de Tons Puros , Limiar Auditivo/fisiologia , Cóclea/fisiopatologia , Doenças Cocleares/fisiopatologia , Nervo Coclear/patologia , Nervo Coclear/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Internas/fisiologia , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Humanos , Emissões Otoacústicas Espontâneas/fisiologia , Reprodutibilidade dos Testes , Sinapses/patologia , Sinapses/fisiologia , Adulto Jovem
19.
Ear Hear ; 40(3): 659-670, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30124503

RESUMO

OBJECTIVES: The aims of this study were to systematically explore the effects of stimulus duration, background (quiet versus noise), and three consonant-vowels on speech-auditory brainstem responses (ABRs). Additionally, the minimum number of epochs required to record speech-ABRs with clearly identifiable waveform components was assessed. The purpose was to evaluate whether shorter duration stimuli could be reliably used to record speech-ABRs both in quiet and in background noise to the three consonant-vowels, as opposed to longer duration stimuli that are commonly used in the literature. Shorter duration stimuli and a smaller number of epochs would require shorter test sessions and thus encourage the transition of the speech-ABR from research to clinical practice. DESIGN: Speech-ABRs in response to 40 msec [da], 50 msec [ba] [da] [ga], and 170 msec [ba] [da] [ga] stimuli were collected from 12 normal-hearing adults with confirmed normal click-ABRs. Monaural (right-ear) speech-ABRs were recorded to all stimuli in quiet and to 40 msec [da], 50 msec [ba] [da] [ga], and 170 msec [da] in a background of two-talker babble at +10 dB signal to noise ratio using a 2-channel electrode montage (Cz-Active, A1 and A2-reference, Fz-ground). Twelve thousand epochs (6000 per polarity) were collected for each stimulus and background from all participants. Latencies and amplitudes of speech-ABR peaks (V, A, D, E, F, O) were compared across backgrounds (quiet and noise) for all stimulus durations, across stimulus durations (50 and 170 msec) and across consonant-vowels ([ba], [da], and [ga]). Additionally, degree of phase locking to the stimulus fundamental frequency (in quiet versus noise) was evaluated for the frequency following response in speech-ABRs to the 170 msec [da]. Finally, the number of epochs required for a robust response was evaluated using Fsp statistic and bootstrap analysis at different epoch iterations. RESULTS: Background effect: the addition of background noise resulted in speech-ABRs with longer peak latencies and smaller peak amplitudes compared with speech-ABRs in quiet, irrespective of stimulus duration. However, there was no effect of background noise on the degree of phase locking of the frequency following response to the stimulus fundamental frequency in speech-ABRs to the 170 msec [da]. Duration effect: speech-ABR peak latencies and amplitudes did not differ in response to the 50 and 170 msec stimuli. Consonant-vowel effect: different consonant-vowels did not have an effect on speech-ABR peak latencies regardless of stimulus duration. Number of epochs: a larger number of epochs was required to record speech-ABRs in noise compared with in quiet, and a smaller number of epochs was required to record speech-ABRs to the 40 msec [da] compared with the 170 msec [da]. CONCLUSIONS: This is the first study that systematically investigated the clinical feasibility of speech-ABRs in terms of stimulus duration, background noise, and number of epochs. Speech-ABRs can be reliably recorded to the 40 msec [da] without compromising response quality even when presented in background noise. Because fewer epochs were needed for the 40 msec [da], this would be the optimal stimulus for clinical use. Finally, given that there was no effect of consonant-vowel on speech-ABR peak latencies, there is no evidence that speech-ABRs are suitable for assessing auditory discrimination of the stimuli used.


Assuntos
Estimulação Acústica/métodos , Potenciais Evocados Auditivos do Tronco Encefálico , Ruído , Fala , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Trends Hear ; 22: 2331216518803213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30295145

RESUMO

Lifetime noise exposure is generally quantified by self-report. The accuracy of retrospective self-report is limited by respondent recall but is also bound to be influenced by reporting procedures. Such procedures are of variable quality in current measures of lifetime noise exposure, and off-the-shelf instruments are not readily available. The Noise Exposure Structured Interview (NESI) represents an attempt to draw together some of the stronger elements of existing procedures and to provide solutions to their outstanding limitations. Reporting is not restricted to prespecified exposure activities and instead encompasses all activities that the respondent has experienced as noisy (defined based on sound level estimated from vocal effort). Changing exposure habits over time are reported by dividing the lifespan into discrete periods in which exposure habits were approximately stable, with life milestones used to aid recall. Exposure duration, sound level, and use of hearing protection are reported for each life period separately. Simple-to-follow methods are provided for the estimation of free-field sound level, the sound level emitted by personal listening devices, and the attenuation provided by hearing protective equipment. An energy-based means of combining the resulting data is supplied, along with a primarily energy-based method for incorporating firearm-noise exposure. Finally, the NESI acknowledges the need of some users to tailor the procedures; this flexibility is afforded, and reasonable modifications are described. Competency needs of new users are addressed through detailed interview instructions (including troubleshooting tips) and a demonstration video. Limited evaluation data are available, and future efforts at evaluation are proposed.


Assuntos
Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/epidemiologia , Ruído Ocupacional/efeitos adversos , Autorrelato , Estudos de Coortes , Feminino , Humanos , Entrevistas como Assunto , Masculino , Avaliação das Necessidades , Prognóstico , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...