Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nat Commun ; 14(1): 7363, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963876

RESUMO

Environmental factors are the major contributor to the onset of immunological disorders such as ulcerative colitis. However, their identities remain unclear. Here, we discover that the amount of consumed L-Tryptophan (L-Trp), a ubiquitous dietary component, determines the transcription level of the colonic T cell homing receptor, GPR15, hence affecting the number of colonic FOXP3+ regulatory T (Treg) cells and local immune homeostasis. Ingested L-Trp is converted by host IDO1/2 enzymes, but not by gut microbiota, to compounds that induce GPR15 transcription preferentially in Treg cells via the aryl hydrocarbon receptor. Consequently, two weeks of dietary L-Trp supplementation nearly double the colonic GPR15+ Treg cells via GPR15-mediated homing and substantially reduce the future risk of colitis. In addition, humans consume 3-4 times less L-Trp per kilogram of body weight and have fewer colonic GPR15+ Treg cells than mice. Thus, we uncover a microbiota-independent mechanism linking dietary L-Trp and colonic Treg cells, that may have therapeutic potential.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Triptofano , Colite/induzido quimicamente , Colo , Receptores de Peptídeos , Receptores Acoplados a Proteínas G/genética
2.
Mol Carcinog ; 62(9): 1428-1443, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401875

RESUMO

Therapy using anti-PD-1 immune checkpoint inhibitors (ICI) has revolutionized the treatment of many cancers including head and neck squamous cell carcinomas (HNSCC), but only a fraction of patients respond. To better understand the molecular mechanisms driving resistance, we performed extensive analysis of plasma and tumor tissues before and after a 4-week neoadjuvant trial in which HNSCC patients were treated with the anti-PD-1 inhibitor, nivolumab. Luminex cytokine analysis of patient plasma demonstrated that HPVpos nonresponders displayed high levels of the proinflammatory chemokine, interleukin-8 (IL-8), which decreased after ICI treatment, but remained higher than responders. miRNAseq analysis of tetraspanin-enriched small extracellular vesicles (sEV) purified from plasma of HPVpos nonresponders demonstrated significantly lower levels of seven miRNAs that target IL-8 including miR-146a. Levels of the pro-survival oncoprotein Dsg2, which has been to down-regulate miR-146a, are elevated with HPVpos tumors displaying higher levels than HPVneg tumors. Dsg2 levels decrease significantly following ICI in responders but not in nonresponders. In cultured HPVpos cells, restoration of miR-146a by forced expression or treatment with miR-146a-loaded sEV, reduced IL-8 level, blocked cell cycle progression, and promoted cell death. These findings identify Dsg2, miR-146a, and IL-8 as potential biomarkers for ICI response and suggest that the Dsg2/miR-146a/IL-8 signaling axis negatively impacts ICI treatment outcomes and could be targeted to improve ICI responsiveness in HPVpos HNSCC patients.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , MicroRNAs , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Interleucina-8/genética , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Terapia Neoadjuvante , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Vesículas Extracelulares/metabolismo
3.
Front Pharmacol ; 14: 1183932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521457

RESUMO

Longer lifespan produces risks of age-associated neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by declines in memory and cognitive function. The pathogenic causes of AD are thought to reflect a progressive aggregation in the brain of amyloid plaques composed of beta-amyloid (Aß) peptides and neurofibrillary tangles composed of phosphorylated tau protein. Recently, long-standing investigations of the Aß disease hypothesis gained support via a passive immunotherapy targeting soluble Aß protein. Tau-targeting approaches using antibodies are also being pursued as a therapeutic approach to AD. In genome-wide association studies, the disease modifier gene Bin1 has been identified as a top risk factor for late-onset AD in human populations, with recent studies suggesting that Bin1 binds tau and influences its extracellular deposition. Interestingly, before AD emerges in the brain, tau levels rise in the colon, where Bin1-a modifier of tissue barrier function and inflammation-acts to promote inflammatory bowel disease (IBD). This connection is provocative given clinical evidence of gut-brain communication in age-associated neurodegenerative disorders, including AD. In this review, we discuss a Bin1-targeting passive immunotherapy developed in our laboratory to treat IBD that may offer a strategy to indirectly reduce tau deposition and limit AD onset or progression.

4.
Sci Rep ; 13(1): 11802, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479833

RESUMO

Ulcerative colitis (UC) is an idiopathic disease of the large intestine linked to high fat-high protein diets, a dysbiotic microbiome, and a metabolome linked to diet and/or aberrant circadian rhythms associated with poor sleeping patterns. Understanding diet-affected factors that negatively influence colonic health may offer new insights into how to prevent UC and enhance the efficacy of UC immunotherapy. In this preclinical study, we found that standard or high fiber diets in mice positively influenced their colonic health, whereas a high fat-high protein diet negatively influenced colonic health, consistent with clinical findings. Animals fed a high fat/high protein diet experienced obesity and a reduced colon length, illustrating a phenotype we suggest calling peinosis [hunger-like-condition; Greek, peina: hunger; osis: condition], as marked by a lack of nutrient energy remaining in fecal pellets. Notably, a high fat/high protein diet also led to signs of muscle weakness that could not be explained fully by weight gain. In contrast, mice on a high fiber diet ranked highest compared to other diets in terms of colon length and lack of muscle weakness. That said, mice on a high fiber diet were more prone to UC and toxic responses to immunotherapy, consistent with clinical observations. Recent studies have suggested that a standard diet may be needed to support the efficacy of immunotherapeutic drugs used to prevent and treat UC. Here we observed that protection against UC by Bin1 mAb, a passive UC immunotherapy that acts by coordinately enforcing intestinal barrier function, protecting enteric neurons, and normalizing the microbiome, was associated with increased colonic levels of healthful short-chain fatty acids (SCFA), particularly butyric acid and propionic acid, which help enforce intestinal barrier function. This work offers a preclinical platform to investigate how diet affects UC immunotherapy and the potential of dietary SCFA supplements to enhance it. Further, it suggests that the beneficial effects of passive immunotherapy by Bin1 mAb in UC treatment may be mediated to some extent by promoting increased levels of healthful SCFA.


Assuntos
Colite Ulcerativa , Animais , Camundongos , Colite Ulcerativa/terapia , Imunoterapia , Dieta Hiperlipídica/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal , Ácido Butírico , Proteínas do Tecido Nervoso , Proteínas Supressoras de Tumor
5.
Front Oncol ; 13: 1165298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182174

RESUMO

In parallel with the genetic and epigenetic changes that accumulate in tumor cells, chronic tumor-promoting inflammation establishes a local microenvironment that fosters the development of malignancy. While knowledge of the specific factors that distinguish tumor-promoting from non-tumor-promoting inflammation remains inchoate, nevertheless, as highlighted in this series on the 'Hallmarks of Cancer', it is clear that tumor-promoting inflammation is essential to neoplasia and metastatic progression making identification of specific factors critical. Studies of immunometabolism and inflamometabolism have revealed a role for the tryptophan catabolizing enzyme IDO1 as a core element in tumor-promoting inflammation. At one level, IDO1 expression promotes immune tolerance to tumor antigens, thereby helping tumors evade adaptive immune control. Additionally, recent findings indicate that IDO1 also promotes tumor neovascularization by subverting local innate immunity. This newly recognized function for IDO1 is mediated by a unique myeloid cell population termed IDVCs (IDO1-dependent vascularizing cells). Initially identified in metastatic lesions, IDVCs may exert broader effects on pathologic neovascularization in various disease settings. Mechanistically, induction of IDO1 expression in IDVCs by the inflammatory cytokine IFNγ blocks the antagonistic effect of IFNγ on neovascularization by stimulating the expression of IL6, a powerful pro-angiogenic cytokine. By contributing to vascular access, this newly ascribed function for IDO1 aligns with its involvement in other cancer hallmark functionalities, (tumor-promoting inflammation, immune escape, altered cellular metabolism, metastasis), which may stem from an underlying role in normal physiological functions such as wound healing and pregnancy. Understanding the nuances of how IDO1 involvement in these cancer hallmark functionalities varies between different tumor settings will be crucial to the future development of successful IDO1-directed therapies.

6.
Cancer J ; 29(1): 34-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36693156

RESUMO

ABSTRACT: Vaccine strategies for cancer differ from infectious disease in focusing mainly on clearing rather than preventing disease. Here we survey general vaccine strategies and combination therapy concepts being investigated for cancer treatment, with a focus on tumor antigens rather than cancer-inducing viruses or microorganisms. Many tumor antigens are "altered-self" and tend to arouse weaker immune responses than "foreign" antigens expressed by infectious agents. Further, unlike an infectious disease patient, a cancer patient's immune system is damaged, suppressed, or senescent and mainly tolerant of their disease. Thus, vaccine efficacy in a cancer patient will rely upon adjuvant or combination treatments that correct the inflammatory tumor microenvironment and degrade tumoral immunosuppression that dominates patient immunity. This brief overview is aimed at new researchers in cancer immunology seeking an overview of vaccine concepts to eradicate malignancy by provoking a selective immune attack.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/uso terapêutico , Neoplasias/terapia , Antígenos de Neoplasias , Microambiente Tumoral
7.
PLoS One ; 17(11): e0276910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36322599

RESUMO

Ulcerative colitis (UC) is a common chronic disease of the large intestine. Current anti-inflammatory drugs prescribed to treat this disease have limited utility due to significant side-effects. Thus, immunotherapies for UC treatment are still sought. In the DSS mouse model of UC, we recently demonstrated that systemic administration of the Bin1 monoclonal antibody 99D (Bin1 mAb) developed in our laboratory was sufficient to reinforce intestinal barrier function and preserve an intact colonic mucosa, compared to control subjects which displayed severe mucosal lesions, high-level neutrophil and lymphocyte infiltration of mucosal and submucosal areas, and loss of crypts. A dysbiotic microbiome may lead to UC. We determined the effects of Bin1 mAb on the gut microbiome and colonic neurons and correlated the benefits of immunotherapeutic treatment. In the DSS model, we found that induction of UC was associated with disintegration of enteric neurons and elevated levels of glial cells, which translocated to the muscularis at distinct sites. Further, we characterized an altered gut microbiome in DSS treated mice associated with pathogenic proinflammatory characters. Both of these features of UC induction were normalized by Bin1 mAb treatment. With regard to microbiome changes, we observed in particular, increase in Enterobacteriaceae; whereas Firmicutes were eliminated by UC induction and Bin1 mAb treatment restored this phylum including the genus Lactobacillus. Overall, our findings suggest that the intestinal barrier function restored by Bin1 immunotherapy in the DSS model of UC is associated with an improvement in the gut microbiome and preservation of enteric neurons, contributing overall to a healthy intestinal tract.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/farmacologia , Colo/patologia , Imunoterapia , Proteínas Adaptadoras de Transdução de Sinal , Fatores Imunológicos/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Modelos Animais de Doenças , Neurônios/patologia , Camundongos Endogâmicos C57BL , Colite/patologia , Proteínas do Tecido Nervoso/farmacologia , Proteínas Supressoras de Tumor/farmacologia
8.
J Immunol ; 208(3): 571-581, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965962

RESUMO

IDO2 is one of two closely related tryptophan catabolizing enzymes induced under inflammatory conditions. In contrast to the immunoregulatory role defined for IDO1 in cancer models, IDO2 has a proinflammatory function in models of autoimmunity and contact hypersensitivity. In humans, two common single-nucleotide polymorphisms have been identified that severely impair IDO2 enzymatic function, such that <25% of individuals express IDO2 with full catalytic potential. This, together with IDO2's relatively weak enzymatic activity, suggests that IDO2 may have a role outside of its function in tryptophan catabolism. To determine whether the enzymatic activity of IDO2 is required for its proinflammatory function, we used newly generated catalytically inactive IDO2 knock-in mice together with established models of contact hypersensitivity and autoimmune arthritis. Contact hypersensitivity was attenuated in catalytically inactive IDO2 knock-in mice. In contrast, induction of autoimmune arthritis was unaffected by the absence of IDO2 enzymatic activity. In pursuing this nonenzymatic IDO2 function, we identified GAPDH, Runx1, RANbp10, and Mgea5 as IDO2-binding proteins that do not interact with IDO1, implicating them as potential mediators of IDO2-specific function. Taken together, our findings identify a novel function for IDO2, independent of its tryptophan catabolizing activity, and suggest that this nonenzymatic function could involve multiple signaling pathways. These data show that the enzymatic activity of IDO2 is required only for some inflammatory immune responses and provide, to our knowledge, the first evidence of a nonenzymatic role for IDO2 in mediating autoimmune disease.


Assuntos
Artrite/imunologia , Autoimunidade/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Técnicas de Introdução de Genes , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Polimorfismo de Nucleotídeo Único/genética
10.
Mol Cancer Ther ; 20(11): 2166-2176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34413127

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal aggressive cancer, in part due to elements of the microenvironment (hypoxia, hypoglycemia) that cause metabolic network alterations. The FDA-approved antihelminthic pyrvinium pamoate (PP) has previously been shown to cause PDAC cell death, although the mechanism has not been fully determined. We demonstrated that PP effectively inhibited PDAC cell viability with nanomolar IC50 values (9-93 nmol/L) against a panel of PDAC, patient-derived, and murine organoid cell lines. In vivo, we demonstrated that PP inhibited PDAC xenograft tumor growth with both intraperitoneal (IP; P < 0.0001) and oral administration (PO; P = 0.0023) of human-grade drug. Metabolomic and phosphoproteomic data identified that PP potently inhibited PDAC mitochondrial pathways including oxidative phosphorylation and fatty acid metabolism. As PP treatment reduced oxidative phosphorylation (P < 0.001), leading to an increase in glycolysis (P < 0.001), PP was 16.2-fold more effective in hypoglycemic conditions similar to those seen in PDAC tumors. RNA sequencing demonstrated that PP caused a decrease in mitochondrial RNA expression, an effect that was not observed with established mitochondrial inhibitors rotenone and oligomycin. Mechanistically, we determined that PP selectively bound mitochondrial G-quadruplexes and inhibited mitochondrial RNA transcription in a G-quadruplex-dependent manner. This subsequently led to a 90% reduction in mitochondrial encoded gene expression. We are preparing to evaluate the efficacy of PP in PDAC in an IRB-approved window-of-opportunity trial (IND:144822).


Assuntos
Adenocarcinoma/tratamento farmacológico , Anti-Helmínticos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Metabolômica/métodos , Compostos de Pirvínio/uso terapêutico , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Anti-Helmínticos/farmacologia , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Humanos , Camundongos , Compostos de Pirvínio/farmacologia , Análise de Sobrevida , Estados Unidos , United States Food and Drug Administration
11.
Cancer Immunol Res ; 9(5): 514-528, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33622713

RESUMO

In addition to immunosuppression, it is generally accepted that myeloid-derived suppressor cells (MDSC) also support tumor angiogenesis. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO1) has been implicated in promoting neovascularization through its positioning as a key regulatory node between the inflammatory cytokines IFNγ and IL6. Here, we report that within the heterogeneous expanse of Gr-1+ MDSCs, both IDO1 expression and the ability to elicit neovascularization in vivo were associated with a minor subset of autofluorescent, CD11blo cells. IDO1 expression was further restricted to a discrete, CD11c and asialo-GM1 double-positive subpopulation of these cells, designated here as IDVCs (IDO1-dependent vascularizing cells), due to the dominant role that IDO1 activity in these cells was found to play in promoting neovascularization. Mechanistically, the induction of IDO1 in IDVCs provided a negative-feedback constraint on the antiangiogenic effect of host IFNγ by intrinsically signaling for the production of IL6 through general control nonderepressible 2 (GCN2)-mediated activation of the integrated stress response. These findings reveal fundamental molecular and cellular insights into how IDO1 interfaces with the inflammatory milieu to promote neovascularization.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-6/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Inflamação/patologia , Interferon gama/genética , Interleucina-6/genética , Camundongos Endogâmicos BALB C , Camundongos Knockout , Metástase Neoplásica , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
12.
Front Immunol ; 11: 1861, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973768

RESUMO

Indoleamine-2,3-dioxygenase (IDO)1 and IDO2 are two closely related tryptophan catabolizing enzymes encoded by linked genes. The IDO pathway is also immunomodulatory, with IDO1 well-characterized as a mediator of tumor immune evasion. Due to its homology with IDO1, IDO2 has been proposed to have a similar immunoregulatory function. Indeed, IDO2, like IDO1, is necessary for the differentiation of regulatory T cells in vitro. However, compared to IDO1, in vivo studies demonstrated a contrasting role for IDO2, with experiments in preclinical models of autoimmune arthritis establishing a proinflammatory role for IDO2 in mediating B and T cell activation driving autoimmune disease. Given their potentially opposing roles in inflammatory responses, interpretation of results obtained using IDO1 or IDO2 single knockout mice could be complicated by the expression of the other enzyme. Here we use IDO1 and IDO2 single and double knockout (dko) mice to define the differential roles of IDO1 and IDO2 in B cell-mediated immune responses. Autoreactive T and B cell responses and severity of joint inflammation were decreased in IDO2 ko, but not IDO1 ko arthritic mice. Dko mice had a reduction in the number of autoantibody secreting cells and severity of arthritis: however, percentages of differentiated T cells and their associated cytokines were not reduced compared to IDO1 ko or wild-type mice. These data suggest that autoreactive B cell responses are mediated by IDO2, while autoreactive T cell responses are indirectly affected by IDO1 expression in the IDO2 ko mice. IDO2 also influenced antibody responses in models of influenza infection and immunization with T cell-independent type II antigens. Taken together, these studies provide evidence for the contrasting roles IDO1 and IDO2 play in immune responses, with IDO1 mediating T cell suppressive effects and IDO2 working directly in B cells as a proinflammatory mediator of B cell responses.


Assuntos
Linfócitos B/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Artrite Experimental/imunologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia
13.
Clin Cancer Res ; 26(19): 5232-5245, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32546647

RESUMO

PURPOSE: Wild-type isocitrate dehydrogenase-expressing glioblastoma (GBM) is the most common and aggressive primary brain tumor with a median age at diagnosis of ≥65 years. It accounts for approximately 90% of all GBMs and has a median overall survival (OS) of <15 months. Although immune checkpoint blockade (ICB) therapy has achieved remarkable survival benefits in a variety of aggressive malignancies, similar success has yet to be achieved for GBM among phase III clinical trials to date. Our study aimed to understand the relationship between subject age and immunotherapeutic efficacy as it relates to survival from glioma. EXPERIMENTAL DESIGN: (i) Clinical data: GBM patient datasets from The Cancer Genome Atlas, Northwestern Medicine Enterprise Data Warehouse, and clinical studies evaluating ICB were stratified by age and compared for OS. (ii) Animal models: young, middle-aged, and older adult wild-type and indoleamine 2,3 dioxygenase (IDO)-knockout syngeneic mice were intracranially engrafted with CT-2A or GL261 glioma cell lines and treated with or without CTLA-4/PD-L1 mAbs, or radiation, anti-PD-1 mAb, and/or a pharmacologic IDO enzyme inhibitor. RESULTS: Advanced age was associated with decreased GBM patient survival regardless of treatment with ICB. The advanced age-associated increase of brain IDO expression was linked to the suppression of immunotherapeutic efficacy and was not reversed by IDO enzyme inhibitor treatment. CONCLUSIONS: Immunosuppression increases in the brain during advanced age and inhibits antiglioma immunity in older adults. Going forward, it will be important to fully understand the factors and mechanisms in the elderly brain that contribute to the decreased survival of older patients with GBM during treatment with ICB.


Assuntos
Encéfalo/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Isocitrato Desidrogenase/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Encéfalo/imunologia , Encéfalo/patologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/imunologia , Modelos Animais de Doenças , Feminino , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Terapia de Imunossupressão/efeitos adversos , Terapia de Imunossupressão/métodos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Intervalo Livre de Progressão
14.
Methods Enzymol ; 629: 219-233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31727242

RESUMO

The essential amino acid tryptophan is catabolized by the first and rate-limiting enzyme of the kynurenine pathway, indoleamine 2,3-dioxygenase-1 (IDO1). IDO1 is implicated in several diseases including cancer, chronic infection, autoimmune disorders and neurodegenerative diseases. Antibodies that accurately recognize human IDO1 protein in situ in tissues are available, including clone 10.1 generated in our laboratory and now widely available through commercial sources (Muller, DuHadaway, Sutanto-Ward, Donover, & Prendergast, 2005). However, until recently, there were no antibodies available to accurately detect murine IDO1 protein in situ in preclinical mouse models of disease. Such probes are crucial to establish cellular mechanisms since IDO1 appears to act in different cell types depending on disease context, but reliable probes have been elusive in the field. Recently we addressed this issue with the development of IDO1 monoclonal antibody 4B7, the specificity of which was fully validated by a lack of binding to tissues derived from mice that are genetically deficient in IDO1. This antibody offers a reagent that is unique in the field for specifically recognizing the enzyme in murine tissues, addressing the acute need for a reliable tool to conduct immunohistology in preclinical disease models.


Assuntos
Anticorpos Monoclonais/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Neoplasias/patologia , Coloração e Rotulagem/métodos , Animais , Anticorpos Monoclonais/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Técnica Indireta de Fluorescência para Anticorpo/métodos , Humanos , Hibridomas , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Neoplasias/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Triptofano/metabolismo
15.
J Cell Biochem ; 120(10): 18320-18331, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211444

RESUMO

Alzheimer's disease (AD) is an irreversible, progressive brain disorder responsible for memory loss leading to the inability to carry out the simplest tasks. AD is one of the leading causes of death in the United States. As yet there are no effective medications to treat this debilitating disease. In recent years, a human gene called bridging integrator 1 (BIN1) has emerged as one of the most important genes in affecting the incidence of sporadic AD. Bin1 can directly bind to Tau and mediates late onset AD risk by modulating Tau pathology. Recently our group found Bin1 antibody could exert drug-like properties in an animal model of ulcerative colitis. We hypothesized that the Bin1 monoclonal antibody (mAb) could be used in the treatment of AD by lowering the levels of Tau in cell culture and animal models. Cell culture studies confirmed that the Bin1 mAb (99D) could lower the levels of phosphorylated Tau (pTau). Multiple mechanisms aided by endosomal proteins and Fc gamma receptors are involved in the uptake of Bin1 mAb into cells. In Tau expressing cell culture, the Bin1 mAb induces the proteasome machinery leading to ubiquitination of molecules thereby preventing cell stress. In vivo studies demonstrated that treatment of P301S mice expressing Tau with the Bin1 mAb survived longer than the untreated mice. Our data confirm that Bin1 mAb lowers the levels of pTau and could be a drug candidate in the treatment of AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Doença de Alzheimer/metabolismo , Anticorpos Monoclonais/farmacologia , Proteínas Nucleares/imunologia , Proteínas Supressoras de Tumor/imunologia , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Anticorpos Monoclonais/imunologia , Células CACO-2 , Modelos Animais de Doenças , Endossomos/metabolismo , Células HEK293 , Humanos , Camundongos Transgênicos , Mutação , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de IgG/metabolismo , Análise de Sobrevida , Ubiquitinação/efeitos dos fármacos , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética
17.
J Cell Biochem ; 120(7): 12051-12062, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30809852

RESUMO

Meglumine is a methylamino derivative of sorbitol that is an approved drug excipient. Recent preclinical studies suggest that administration of high-dose oral meglumine can exert beneficial medicinal effects to treat diabetes, obesity, and fatty liver disease (NAFLD/nonalcoholic steatohepatitis [NASH]). Here we address gaps in knowledge about the pharmacology and toxicology of this substance administered at high concentrations to explore its medicinal potential. We observed that high-dose meglumine limited secretion of proinflammatory cytokines and cell adhesion molecules from activated human THP-1 or murine RAW264.7 monocytes. Preclinical pharmacokinetic analysis in Swiss mice confirmed that meglumine was orally available. Informed by this data, oral doses of 18 to 75 mM meglumine were administered ad libitum in the drinking water of Sprague-Dawley rats and two cohorts of C57BL/6 mice housed in different vivariums. In a 32-week study, urinary isoprostane levels trended lower in subjects consistent with the possibility of anti-inflammatory effects. In full lifespan studies, there was no detrimental effect on longevity. Heart function evaluated in C57BL/6 mice using an established noninvasive cardiac imaging system showed no detrimental effects on ejection fraction, fractional shortening, left ventricle function or volume, and cardiac output in mice up to 15-month old, with a potential positive trend in heart function noted in elderly mice consistent with earlier reported benefits on muscle stamina. Finally, in a transgenic model of inflammation-associated skin carcinogenesis, the incidence, number, and growth of skin tumors trended lower in subjects receiving meglumine. Overall, the evidence obtained illustrating the long-range safety of high-dose oral meglumine support the rationale for its evaluation as a low-cost modality to limit diabetes, hypertriglyceridemia, and NAFLD/NASH.

18.
MAbs ; 11(3): 546-558, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30794061

RESUMO

Hybridoma methods for monoclonal antibody (mAb) cloning are a mainstay of biomedical research, but they are hindered by the need to maintain hybridomas in oligoclonal pools during antibody screening. Here, we describe a system in which hybridomas specifically capture and display the mAbs they secrete: On-Cell mAb Screening (OCMS™). In OCMS™, mAbs displayed on the cell surface can be rapidly assayed for expression level and binding specificity using fluorescent antigens with high-content (image-based) methods or flow cytometry. OCMS™ demonstrated specific mAb binding to poliovirus and rabies virus by forming a cell surface IgG "cap", as a universal assay for anti-viral mAbs. We produced and characterized OCMS™-enabled hybridomas secreting mAbs that neutralize poliovirus and used fluorescence microscopy to identify and clone a human mAb specific for the human N-methyl-D-aspartate receptor. Lastly, we used OCMS™ to assess expression and antigen binding of a recombinant mAb produced in 293T cells. As a novel method to physically associate mAbs with the hybridomas that secrete them, OCMS™ overcomes a central challenge to hybridoma mAb screening and offers new paradigms for mAb discovery and production.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Técnicas de Visualização da Superfície Celular/métodos , Citometria de Fluxo , Hibridomas/imunologia , Poliovirus/imunologia , Vírus da Raiva/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Células HEK293 , Humanos
19.
Nat Rev Cancer ; 19(3): 162-175, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30696923

RESUMO

Immune checkpoints arise from physiological changes during tumorigenesis that reprogramme inflammatory, immunological and metabolic processes in malignant lesions and local lymphoid tissues, which constitute the immunological tumour microenvironment (TME). Improving clinical responses to immune checkpoint blockade will require deeper understanding of factors that impact local immune balance in the TME. Elevated catabolism of the amino acids tryptophan (Trp) and arginine (Arg) is a common TME hallmark at clinical presentation of cancer. Cells catabolizing Trp and Arg suppress effector T cells and stabilize regulatory T cells to suppress immunity in chronic inflammatory diseases of clinical importance, including cancers. Processes that induce Trp and Arg catabolism in the TME remain incompletely defined. Indoleamine 2,3 dioxygenase (IDO) and arginase 1 (ARG1), which catabolize Trp and Arg, respectively, respond to inflammatory cues including interferons and transforming growth factor-ß (TGFß) cytokines. Dying cells generate inflammatory signals including DNA, which is sensed to stimulate the production of type I interferons via the stimulator of interferon genes (STING) adaptor. Thus, dying cells help establish local conditions that suppress antitumour immunity to promote tumorigenesis. Here, we review evidence that Trp and Arg catabolism contributes to inflammatory processes that promote tumorigenesis, impede immune responses to therapy and might promote neurological comorbidities associated with cancer.


Assuntos
Aminoácidos/imunologia , Carcinogênese/imunologia , Metabolismo/imunologia , Animais , Humanos , Microambiente Tumoral/imunologia
20.
J Cell Biochem ; 120(3): 4225-4237, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30269357

RESUMO

Patients afflicted with ulcerative colitis (UC) are at increased risk of colorectal cancer. While its causes are not fully understood, UC is associated with defects in colonic epithelial barriers that sustain inflammation of the colon mucosa caused by recruitment of lymphocytes and neutrophils into the lamina propria. Based on genetic evidence that attenuation of the bridging integrator 1 (Bin1) gene can limit UC pathogenicity in animals, we have explored Bin1 targeting as a therapeutic option. Early feasibility studies in the dextran sodium sulfate mouse model of experimental colitis showed that administration of a cell-penetrating Bin1 monoclonal antibody (Bin1 mAb 99D) could prevent lesion formation in the colon mucosa in part by preventing rupture of lymphoid follicles. In vivo administration of Bin1 mAb altered tight junction protein expression and cecal barrier function. Strikingly, electrophysiology studies in organ cultures showed that Bin1 mAb could elevate resistance and lower 14 C-mannitol leakage across the cecal mucosa, consistent with a direct strengthening of colonic barrier function. Transcriptomic analyses of colitis tissues highlighted altered expression of genes involved in circadian rhythm, lipid metabolism, and inflammation, with a correction of the alterations by Bin1 mAb treatment to patterns characteristic of normal tissues. Overall, our results suggest that Bin1 mAb protects against UC by directly improving colonic epithelial barrier function to limit gene expression and cytokine programs associated with colonic inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos Monoclonais/uso terapêutico , Colite Ulcerativa/terapia , Imunoterapia/métodos , Mucosa Intestinal/metabolismo , Proteínas do Tecido Nervoso/imunologia , Substâncias Protetoras/uso terapêutico , Junções Íntimas/metabolismo , Proteínas Supressoras de Tumor/imunologia , Animais , Células CACO-2 , Colite Ulcerativa/induzido quimicamente , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...