Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 6(11): 6314-6322, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38903400

RESUMO

Four-dimensional printing with embedded photoluminescence is emerging as an exciting area in additive manufacturing. Slim polymer films patterned with three-dimensional lattices of multimode cylindrical waveguides (waveguide-encoded lattices, WELs) with enhanced fields of view can be fabricated by localizing light as self-trapped beams within a photopolymerizable formulation. Luminescent WELs have potential applications as solar cell coatings and smart planar optical components. However, as luminophore-photoinitiator interactions are expected to change the photopolymerization kinetics, the design of robust luminescent photopolymer sols is nontrivial. Here, we use model photopolymer systems based on methacrylate-siloxane and epoxide homopolymers and their blends to investigate the influence of the luminophore Lumogen Violet (LV) on the photolysis kinetics of the Omnirad 784 photoinitiator through UV-vis absorbance spectroscopy. Initial rate analysis with different bulk polymers reveals differences in the pseudo-first-order rate constants in the absence and presence of LV, with a notable increase (∼40%) in the photolysis rate for the 1:1 blend. Fluorescence quenching studies, coupled with density functional theory calculations, establish that these differences arise due to electron transfer from the photoexcited LV to the ground-state photoinitiator molecules. We also demonstrate an in situ UV-vis absorbance technique that enables real-time monitoring of both waveguide formation and photoinitiator consumption during the fabrication of WELs. The in situ photolysis kinetics confirm that LV-photoinitiator interactions also influence the photopolymerization process during WEL formation. Our findings show that luminophores play a noninnocent role in photopolymerization and highlight the necessity for both careful consideration of the photopolymer formulation and a real-time monitoring approach to enable the fabrication of high-quality micropatterned luminescent polymeric films.

2.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38814011

RESUMO

Using the recently developed multistate mapping approach to surface hopping (multistate MASH) method combined with SA(3)-CASSCF(12,12)/aug-cc-pVDZ electronic structure calculations, the gas-phase isotropic ultrafast electron diffraction (UED) of cyclobutanone is predicted and analyzed. After excitation into the n-3s Rydberg state (S2), cyclobutanone can relax through two S2/S1 conical intersections, one characterized by compression of the CO bond and the other by dissociation of the α-CC bond. Subsequent transfer into the ground state (S0) is then achieved via two additional S1/S0 conical intersections that lead to three reaction pathways: α ring-opening, ethene/ketene production, and CO liberation. The isotropic gas-phase UED signal is predicted from the multistate MASH simulations, allowing for a direct comparison to the experimental data. This work, which is a contribution to the cyclobutanone prediction challenge, facilitates the identification of the main photoproducts in the UED signal and thereby emphasizes the importance of dynamics simulations for the interpretation of ultrafast experiments.

3.
J Chem Theory Comput ; 19(24): 9161-9176, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38061390

RESUMO

A modular selected configuration interaction (SCI) code has been developed that is based on the existing Monte-Carlo configuration interaction code (MCCI). The modularity allows various selection protocols to be implemented with ease and allows for fair comparison between wave functions built via different criteria. We have initially implemented adaptations of existing SCI theories, which are based on either energy- or coefficient-driven selection schemes. These codes have been implemented not only in the basis of Slater determinants (SDs) but also in the basis of configuration state functions (CSFs) and extended to state-averaged regimes. This allows one to take advantage of the reduced dimensionality of the wave function in the CSF basis and also the guarantee of pure spin states. All SCI methods were found to be able to predict potential energy surfaces to high accuracy, producing compact wave functions, when compared to full configuration interaction (FCI) for a variety of bond-breaking potential energy surfaces. The compactness of the error-controlled adaptive configuration interaction approach, particularly in the CSF basis, was apparent with nonparallelity errors within chemical accuracy while containing as little as 0.02% of the FCI CSF space. The size-to-accuracy was also extended to FCI spaces approaching one billion configurations.

4.
Adv Mater ; 35(19): e2210363, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36787500

RESUMO

Hypoxia represents a remarkably exploitable target for cancer therapy, is encountered only in solid human tumors, and is highly associated with cancer resistance and recurrence. Here, a hypoxia-activated mitochondria-accumulated Ru(II) polypyridyl prodrug functionalized with conjugated azo (Az) and nitrogen mustard (NM) functionalities, RuAzNM, is reported. This prodrug has multimodal theranostic properties toward hypoxic cancer cells. Reduction of the azo group in hypoxic cell microenvironments gives rise to the generation of two primary amine products, a free aniline mustard, and the polypyridyl RuNH2 complex. Thus, the aniline mustard triggers generation of reactive oxygen species (ROS) and mtDNA crosslinking. Meanwhile, the resultant biologically benign phosphorescent RuNH2 gives rise to a diagnostic signal and signals activation of the phototherapy. This multimodal therapeutic effect eventually elevates ROS levels, depletes reduced nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP), and induces mitochondrial membrane damage, mtDNA damage, and ultimately cell apoptosis. This unique strategy allows controlled multimodal theranostics to be realized in hypoxic cells and multicellular spheroids, making RuAzNM a highly selective and effective cancer-cell-selective theranostic agent (IC50  = 2.3 µm for hypoxic HepG2 cancer cells vs 58.2 µm for normoxic THL-3 normal cells). This is the first report of a metal-based compound developed as a multimodal theranostic agent for hypoxia.


Assuntos
Mostarda de Anilina , Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Hipóxia/metabolismo , DNA Mitocondrial , Oxirredução , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
5.
J Phys Chem Lett ; 12(44): 10899-10905, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34730969

RESUMO

Polymer photocatalysts are a synthetically diverse class of materials that can be used for the production of solar fuels such as H2, but the underlying mechanisms by which they operate are poorly understood. Time-resolved vibrational spectroscopy provides a powerful structure-specific probe of photogenerated species. Here we report the use of time-resolved resonance Raman (TR3) spectroscopy to study the formation of polaron pairs and electron polarons in one of the most active linear polymer photocatalysts for H2 production, poly(dibenzo[b,d]thiophene sulfone), P10. We identify that polaron-pair formation prior to thermalization of the initially generated excited states is an important pathway for the generation of long-lived photoelectrons.

6.
J Phys Chem A ; 124(51): 10667-10677, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320005

RESUMO

We provide a set of molecular dynamics simulations employing a force field specifically parameterized for organic π-conjugated materials. The resulting conformation ensemble was coupled to quantum chemistry calculations, and quantities of interest for optoelectronic applications, namely, ground- and excited-state energies, oscillator strengths, and dipole moments were extracted. This combined approach allowed not only exploration of the configurational landscape but also of the resulting electronic properties of each frame within the simulation and thus probe the link between conformation and property. A study was made of the sampling and convergence requirements to yield reliable averages over the ensemble. Typically between 800 and 1000 conformations were sufficient to ensure convergence of properties. However, for some oligomers, more configurations were required to achieve convergence of the oscillator strength and magnitude of the dipole moment.

7.
J Chem Phys ; 151(16): 164112, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675885

RESUMO

We introduce a systematic approach to construct configuration interaction (CI) wavefunctions through a variant of the Monte Carlo CI (MCCI) method termed systematic-MCCI. Within this approach, the entire interacting space is systematically considered in batches, with the most important configurations across all batches becoming potential additions to the wavefunction. We compare this method to MCCI and a novel pruned-full configuration interaction (FCI) approach. For the ground state of neon, as described by the cc-pVTZ basis, we observe no apparent difference between systematic-MCCI, pruned-MCCI, and MCCI, with all recovering 99% of the correlation energy and producing a very similar wavefunction composition. We then consider the potential energy surface corresponding to the symmetric double hydrogen dissociation of water within a cc-pVDZ basis. Once again MCCI performs comparably to the systematic approaches. Despite systematic-MCCI having longer run times across the number of processors considered, we do observe very good scalability. We then extend this comparison to the first A1 excited energy of carbon monoxide using the cc-pVDZ basis where the MCCI methods perform similarly, approximating this aforementioned energy to within 0.1 eV despite vast reduction in the wavefunction size. Finally, we consider the chromium dimer with the cc-pVTZ basis and 18 frozen orbitals. Here, we find that the systematic approach avoids being trapped in the same local minimum of configuration space as MCCI, yet MCCI can reach a lower energy by repeating the calculation with more processors.

8.
ChemNanoMat ; 4(8): 853-859, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31032176

RESUMO

A new family of supramolecular hydrogelators are introduced in which self-sorting and co-assembly can be utilised in the tuneability of the mechanical properties of the materials, a property closely tied to the nanostructure of the gel network. The in situ reactivity of the components of the gelators allows for system chemistry concepts to be applied to the formation of the gels and shows that molecular properties, and not necessarily the chemical identity, determines some gel properties in these family of gels.

9.
J Org Chem ; 82(13): 6656-6670, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28574257

RESUMO

Nitrofurans undergo intramolecular Diels-Alder reactions with tethered electron-poor dienophiles more rapidly and in higher yield than non-nitrated furans. Computational studies indicate that increased stabilization of a partial positive charge on the nitro-substituted carbon in both transition state and product is the driving force for these reactions. Frontier molecular orbital energy differences indicate a switch from normal to inverse electron demand upon nitration. There does not appear to be a contribution from any differences in aromatic stabilization energy between furans and nitrofurans. Calculations show that the nitrofuran reactions proceed via a highly asynchronous transition state allowing easier bond formation between two sterically hindered carbons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...