Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 10(1): 134, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076304

RESUMO

BACKGROUND: The molecular drivers of early sporadic Parkinson's disease (PD) remain unclear, and the presence of widespread end stage pathology in late disease masks the distinction between primary or causal disease-specific events and late secondary consequences in stressed or dying cells. However, early and mid-stage Parkinson's brains (Braak stages 3 and 4) exhibit alpha-synuclein inclusions and neuronal loss along a regional gradient of severity, from unaffected-mild-moderate-severe. Here, we exploited this spatial pathological gradient to investigate the molecular drivers of sporadic PD. METHODS: We combined high precision tissue sampling with unbiased large-scale profiling of protein expression across 9 brain regions in Braak stage 3 and 4 PD brains, and controls, and verified these results using targeted proteomic and functional analyses. RESULTS: We demonstrate that the spatio-temporal pathology gradient in early-mid PD brains is mirrored by a biochemical gradient of a changing proteome. Importantly, we identify two key events that occur early in the disease, prior to the occurrence of alpha-synuclein inclusions and neuronal loss: (i) a metabolic switch in the utilisation of energy substrates and energy production in the brain, and (ii) perturbation of the mitochondrial redox state. These changes may contribute to the regional vulnerability of developing alpha-synuclein pathology. Later in the disease, mitochondrial function is affected more severely, whilst mitochondrial metabolism, fatty acid oxidation, and mitochondrial respiration are affected across all brain regions. CONCLUSIONS: Our study provides an in-depth regional profile of the proteome at different stages of PD, and highlights that mitochondrial dysfunction is detectable prior to neuronal loss, and alpha-synuclein fibril deposition, suggesting that mitochondrial dysfunction is one of the key drivers of early disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Mitocôndrias/metabolismo , Doença de Parkinson/patologia , Proteoma/metabolismo , Proteômica , alfa-Sinucleína/metabolismo
2.
Neurobiol Dis ; 45(3): 1086-100, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198570

RESUMO

Niemann-Pick disease type C (NPC) is an inherited lysosomal storage disease characterised by accumulation of cholesterol and glycosphingolipids. NPC patients suffer a progressive neurodegenerative phenotype presenting with motor dysfunction, mental retardation and cognitive decline. To examine the onset and progression of neuropathological insults in NPC we have systematically examined the CNS of a mouse model of NPC1 (Npc1(-/-) mice) at different stages of the disease course. This revealed a specific spatial and temporal pattern of neuropathology in Npc1(-/-) mice, highlighting that sensory thalamic pathways are particularly vulnerable to loss of NPC1 resulting in neurodegeneration in Npc1(-/-) mice. Examination of markers of astrocytosis and microglial activation revealed a particularly pronounced reactive gliosis in the thalamus early in the disease, which subsequently also occurred in interconnected cortical laminae at later ages. Our examination of the precise staging of events demonstrate that the relationship between glia and neurons varies between brain regions in Npc1(-/-) mice, suggesting that the cues causing glial reactivity may differ between brain regions. In addition, aggregations of pre-synaptic markers are apparent in white matter tracts and the thalamus and are likely to be formed within axonal spheroids. Our data provide a new perspective, revealing a number of events that occur prior to and alongside neuron loss and highlighting that these occur in a pathway dependent manner.


Assuntos
Córtex Cerebral/patologia , Neuroglia/patologia , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/patologia , Proteínas/genética , Sinapses/patologia , Tálamo/patologia , Fatores Etários , Análise de Variância , Animais , Antígenos CD/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteína C1 de Niemann-Pick , Proteínas/metabolismo , Proteínas R-SNARE/metabolismo
3.
Neurobiol Dis ; 42(3): 349-59, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21303697

RESUMO

Niemann-Pick type C disease (NPC) is a lysosomal storage disorder which, at the cellular level, shows amyloid Aß and tau pathologies comparable to those seen in the AD brain. Here, we have investigated, in a mouse model of NPC, the impact of removing the source of Aß, namely APP, on the disease phenotype and on the expression levels and phosphorylation patterns of tau. We reasoned that removing APP from the NPC brain might help to unveil its impact on the disease phenotype and shed light on the mechanisms governing the interaction, both physiological and pathological, between APP function and tau homeostasis, at least in NPC. We show that, unexpectedly, loss of APP in NPC mice leads to poorer neuromuscular coordination and cumulative survival rates; exacerbation of their cholesterol abnormalities; higher levels of astrocytosis and dysregulation of tau homeostasis. Our results are consistent with a mechanism of neurodegeneration in the NPC and AD brains in which cholesterol dysregulation is a key early pathogenic event affecting tau homeostasis in parallel with, and independently of, amyloid accumulation.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Fosforilação/genética , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Western Blotting , Encéfalo/patologia , Modelos Animais de Doenças , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Fenótipo , Redução de Peso/fisiologia , Proteínas tau/genética
4.
Hum Mol Genet ; 20(7): 1375-86, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21252206

RESUMO

Gaucher disease (GD), the most common lysosomal storage disorder, is caused by a deficiency in the lysosomal enzyme glucocerebrosidase (GlcCerase), which results in intracellular accumulation of glucosylceramide (GlcCer). The rare neuronopathic forms of GD are characterized by profound neurological impairment and neuronal cell death, but little is known about the neuropathological changes that underlie these events. We now systematically examine the onset and progression of various neuropathological changes (including microglial activation, astrogliosis and neuron loss) in a mouse model of neuronopathic GD, and document the brain areas that are first affected, which may reflect vulnerability of these areas to GlcCerase deficiency. We also identify neuropathological changes in several brain areas and pathways, such as the substantia nigra reticulata, reticulotegmental nucleus of the pons, cochlear nucleus and the somatosensory system, which could be responsible for some of the neurological manifestations of the human disease. In addition, we establish that microglial activation and astrogliosis are spatially and temporally correlated with selective neuron loss.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Doença de Gaucher/patologia , Doença de Gaucher/fisiopatologia , Inflamação/fisiopatologia , Neurônios/patologia , Animais , Encéfalo/enzimologia , Morte Celular , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Mutantes , Neurônios/enzimologia
5.
J Neuropathol Exp Neurol ; 69(12): 1228-46, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21107136

RESUMO

The proteins ClC-6 and ClC-7 are expressed in the endosomal-lysosomal system. Because Clcn6-deficient mice display some features of neuronal ceroid lipofuscinosis (NCL), CLCN6 may be a candidate gene for novel forms of NCL. Using landmarks of disease progression from NCL mouse models as a guide, we examined neuropathologic alterations in the central nervous system of Clcn6(-/-), Clcn7(-/-), andgl mice. gl mice bear a mutation in Ostm1, the ß-subunit critical for Clcn7 function. Severely affected Clcn7(-/-) and gl mice have remarkably similar neuropathologic phenotypes, with pronounced reactive changes and neuron loss in the thalamocortical system, similar to findings in early-onset forms of NCL. In contrast, Clcn6(-/-) mice display slowly progressive, milder neuropathologic features with very little thalamic involvement or microglial activation. These findings detail for the first time the markedly different neuropathologic consequences of mutations in these two CLC genes. Clcn7(-/-) and gl mice bear a close resemblance to the progressive neuropathologic phenotypes of early onset forms of NCL, whereas the distinct phenotype of Clcn6-deficient mice suggests that this gene could be a candidate for a later-onset form of mild neurologic dysfunction with some NCL-like features.


Assuntos
Córtex Cerebral/patologia , Canais de Cloreto/deficiência , Proteínas de Membrana/deficiência , Lipofuscinoses Ceroides Neuronais/patologia , Fenótipo , Tálamo/patologia , Animais , Proteínas de Transporte/genética , Córtex Cerebral/metabolismo , Canais de Cloreto/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...