Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(41): 7690-7706, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36414011

RESUMO

Persistent firing is commonly reported in both cortical and subcortical neurons under a variety of behavioral conditions. Yet the mechanisms responsible for persistent activity are only partially resolved with support for both intrinsic and synaptic circuit-based mechanisms. Little also is known about physiological factors that enable epochs of persistent firing to continue beyond brief pauses and then spontaneously terminate. In the present study, we used intracellular recordings in rat (both sexes) neocortical and hippocampal brain slices to assess the ionic mechanisms underlying persistent firing dynamics. Previously, we showed that blockade of ether-á-go-go-related gene (ERG) potassium channels abolished intrinsic persistent firing in the presence of low concentrations of muscarinic receptor agonists and following optogenetic activation of cholinergic axons. Here we show the slow dynamics of ERG conductance changes allows persistent firing to outlast the triggering stimulus and even to initiate discharges following ∼7 s poststimulus firing pauses. We find that persistent firing dynamics is regulated by the interaction between ERG conductance and spike afterhyperpolarizations (AHPs). Increasing the amplitude of spike AHPs using either SK channel activators or a closed-loop reactive feedback system allows persistent discharges to spontaneously terminate in both neocortical neurons and hippocampal CA1 pyramidal cells. The interplay between ERG and the potassium channels that mediate spike AHPs grades the duration of persistent firing, providing a novel, generalizable mechanism to explain self-terminating persistent firing modes observed behaving animals.SIGNIFICANCE STATEMENT Many classes of neurons generate prolonged spiking responses to transient stimuli. These discharges often outlast the stimulus by seconds to minutes in some in vitro models of persistent firing. While recent work has identified key synaptic and intrinsic components that enable persistent spiking responses, less is known about mechanisms that can terminate and regulate the dynamics of these responses. The present study identified the spike afterhyperpolarizations as a potent mechanism that regulates the duration of persistent firing. We found that amplifying spike afterpotentials converted bistable persistent firing into self-terminating discharges. Varying the spike AHP amplitude grades the duration of persistent discharges, generating in vitro responses that mimic firing modes associated with neurons associated with short-term memory function.


Assuntos
Neocórtex , Masculino , Feminino , Ratos , Animais , Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , Hipocampo/fisiologia , Canais de Potássio
2.
J Neurosci ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906068

RESUMO

Principal cells in the olfactory bulb (OB), mitral and tufted cells, receive direct sensory input and generate output signals that are transmitted to downstream cortical targets. Excitatory input from glutamatergic receptor neurons are the primary known sources of rapid excitation to OB principal cells. Principal cells also receive inhibitory input from local GABAergic interneurons in both the glomerular and plexiform layers. Previous work suggests that the functional effect of these inhibitory inputs, including numerous dendrodendritic synapses with GABAergic granule cells, is to reduce firing probability. In this study, we use in vitro patch clamp recordings to demonstrate that rat (of both sexes) OB mitral cells also can be excited by GABAergic synapses formed outside the glomerular layer. Depolarizing GABAergic responses to focal extracellular stimulation were revealed when fast ionotropic glutamate receptors were blocked, and occurred with short, monosynaptic latencies. These novel synaptic responses were abolished by gabazine, bicuculline and picrotoxin, three structurally dissimilar GABAA receptor antagonists. The likely location of depolarizing GABAergic input to mitral cells was the proximal axon based on the actions of focally applied gabazine and GABA near this region. Excitatory GABAergic synaptic responses, commonly studied in cortical brain regions, have not been reported previously in OB principal cells. Excitatory GABAergic responses promote action potential firing and provide a mechanism for mitral cells to be excited independently of olfactory sensory input.SIGNIFICANCE STATEMENTOdor stimuli generate distinctive activity patterns in olfactory bulb neurons through a combination of excitatory and inhibitory synaptic interactions. Most of the excitatory drive to each principal cell is assumed to arise from a highly restricted subset of sensory neurons. This study describes a novel second source of synaptic excitation to principal cells to arises from GABAergic inputs to the proximal axon, a common site of action potential initiation. This new pathway provides a synaptic mechanism to excite OB principal cells that is independent of the canonical excitatory sensory input contained in the glomerular layer.

3.
J Neurosci ; 40(50): 9701-9714, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33234611

RESUMO

The olfactory bulb (OB) serves as a relay region for sensory information transduced by receptor neurons in the nose and ultimately routed to a variety of cortical areas. Despite the highly structured organization of the sensory inputs to the OB, even simple monomolecular odors activate large regions of the OB comprising many glomerular modules defined by afferents from different receptor neuron subtypes. OB principal cells receive their primary excitatory input from only one glomerular channel defined by inputs from one class of olfactory receptor neurons. By contrast, interneurons, such as GABAergic granule cells (GCs), integrate across multiple channels through dendodendritic inputs on their distal apical dendrites. Through their inhibitory synaptic actions, GCs appear to modulate principal cell firing to enhance olfactory discrimination, although how GCs contribute to olfactory function is not well understood. In this study, we identify a second synaptic pathway by which principal cells in the rat (both sexes) OB excite GCs by evoking potent nondepressing EPSPs (termed large-amplitude, nondendrodendritic [LANDD] EPSPs). LANDD EPSPs show little depression in response to tetanic stimulation and, therefore, can be distinguished other EPSPs that target GCs. LANDD EPSPs can be evoked by both focal stimulation near GC proximal dendrites and by activating sensory inputs in the glomerular layer in truncated GCs lacking dendrodendritic inputs. Using computational simulations, we show that LANDD EPSPs more reliably encode the duration of principal cell discharges than DD EPSPs, enabling GCs to compare contrasting versions of odor-driven activity patterns.SIGNIFICANCE STATEMENT The olfactory bulb plays a critical role in transforming broad sensory input patterns into odor-selective population responses. How this occurs is not well understood, but the local bulbar interneurons appear to be centrally involved in the process. Granule cells, the most common interneuron in the olfactory bulb, are known to broadly integrate sensory input through specialized synapses on their distal dendrites. Here we describe a second class of local excitatory inputs to granule cells that are more powerful than distal inputs and fail to depress with repeated stimulation. This second, proximal pathway allows bulbar interneurons to assay divergent versions of the same sensory input pattern.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Animais , Dendritos/fisiologia , Feminino , Masculino , Inibição Neural/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Olfato/fisiologia , Sinapses/fisiologia
4.
J Neurosci ; 39(49): 9674-9688, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31662426

RESUMO

Principal cells in the olfactory bulb (OB), mitral and tufted cells, play key roles in processing and then relaying sensory information to downstream cortical regions. How OB local circuits facilitate odor-specific responses during odor discrimination is not known but involves GABAergic inhibition mediated by axonless granule cells (GCs), the most abundant interneuron in the OB. Most previous work on GCs has focused on defining properties of distal apical dendrites where these interneurons form reciprocal dendrodendritic connections with principal cells. Less is known about the function of the proximal dendritic compartments. In the present study, we identified the likely action potentials (AP) initiation zone by comparing electrophysiological properties of rat (either sex) GCs with apical dendrites severed at different locations. We find that truncated GCs with long apical dendrites had active properties that were indistinguishable from intact GCs, generating full-height APs and short-latency low-threshold Ca2+ spikes. We then confirmed the presumed site of AP and low-threshold Ca2+ spike initiation in the proximal apical dendrite using two-photon Ca2+ photometry and focal TTX application. These results suggest that GCs incorporate two separate pathways for processing synaptic inputs: an already established dendrodendritic input to the distal apical dendrite and a novel pathway in which the cell body integrates proximal synaptic inputs, leading to spike generation in the proximal apical dendrite. Spikes generated by the proximal pathway likely enables GCs to regulate lateral inhibition by defining time windows when lateral inhibition is functional.SIGNIFICANCE STATEMENT The olfactory bulb plays a central role in processing sensory input transduced by receptor neurons. How local circuits in the bulb function to facilitate sensory processing during odor discrimination is not known but appears to involve inhibition mediated by granule cells, axonless GABAergic interneurons. Little is known about the active conductances in granule cells including where action potentials originate. Using a variety of experimental approaches, we find the Na+-based action potentials originate in the proximal apical dendrite, a region targeted by cortical feedback afferents. We also find evidence for high expression of low-voltage activated Ca2+ channels in the same region, intrinsic currents that enable GCs to spike rapidly in response to sensory input during each sniff cycle.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Dendritos/fisiologia , Interneurônios/fisiologia , Bulbo Olfatório/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Grânulos Citoplasmáticos/fisiologia , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Bulbo Olfatório/citologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Olfato/fisiologia , Tetrodotoxina/farmacologia
5.
J Neurosci ; 37(49): 11774-11788, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29066560

RESUMO

The olfactory bulb contains excitatory principal cells (mitral and tufted cells) that project to cortical targets as well as inhibitory interneurons. How the local circuitry in this region facilitates odor-specific output is not known, but previous work suggests that GABAergic granule cells plays an important role, especially during fine odor discrimination. Principal cells interact with granule cells through reciprocal dendrodendritic connections that are poorly understood. While many studies examined the GABAergic output side of these reciprocal connections, little is known about how granule cells are excited. Only two previous studies reported monosynaptically coupled mitral/granule cell connections and neither attempted to determine the fundamental properties of these synapses. Using dual intracellular recordings and a custom-built loose-patch amplifier, we have recorded unitary granule cell EPSPs evoked in response to mitral cell action potentials in rat (both sexes) brain slices. We find that the unitary dendrodendritic input is relatively weak with highly variable release probability and short-term depression. In contrast with the weak dendrodendritic input, the facilitating cortical input to granule cells is more powerful and less variable. Our computational simulations suggest that dendrodendritic synaptic properties prevent individual principal cells from strongly depolarizing granule cells, which likely discharge in response to either concerted activity among a large proportion of inputs or coactivation of a smaller subset of local dendrodendritic inputs with coincidence excitation from olfactory cortex. This dual-pathway requirement likely enables the sparse mitral/granule cell interconnections to develop highly odor-specific responses that facilitate fine olfactory discrimination.SIGNIFICANCE STATEMENT The olfactory bulb plays a central role in converting broad, highly overlapping, sensory input patterns into odor-selective population responses. How this occurs is not known, but experimental and theoretical studies suggest that local inhibition often plays a central role. Very little is known about how the most common local interneuron subtype, the granule cell, is excited during odor processing beyond the unusual anatomical arraignment of the interconnections (reciprocal dendrodendritic synapses). Using paired recordings and two-photon imaging, we determined the properties of the primary input to granule cells for the first time and show that these connections bias interneurons to fire in response to spiking in large populations of principal cells rather than a small group of highly active cells.


Assuntos
Dendritos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Sinapses/fisiologia , Animais , Feminino , Masculino , Rede Nervosa/fisiologia , Plasticidade Neuronal , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
6.
Neuron ; 91(2): 312-9, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27346533

RESUMO

Purkinje cells (PCs) provide the sole output from the cerebellar cortex. Although PCs are well characterized on many levels, surprisingly little is known about their axon collaterals and their target neurons within the cerebellar cortex. It has been proposed that PC collaterals transiently control circuit assembly in early development, but it is thought that PC-to-PC connections are subsequently pruned. Here, we find that all PCs have collaterals in young, juvenile, and adult mice. Collaterals are restricted to the parasagittal plane, and most synapses are located in close proximity to PCs. Using optogenetics and electrophysiology, we find that in juveniles and adults, PCs make synapses onto other PCs, molecular layer interneurons, and Lugaro cells, but not onto Golgi cells. These findings establish that PC output can feed back and regulate numerous circuit elements within the cerebellar cortex and is well suited to contribute to processing in parasagittal zones.


Assuntos
Axônios/fisiologia , Córtex Cerebelar/fisiologia , Interneurônios/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia , Animais , Núcleos Cerebelares/fisiologia , Retroalimentação
7.
Learn Mem ; 20(9): 459-66, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23950193

RESUMO

In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods identified many other, nongranule cell types in the OB whose function remains mysterious. Within just the granule cell layer (GCL), Ramón y Cajal described multiple morphologically distinct subtypes of nongranule interneurons including large spiny Blanes cells which exhibit intrinsic persistent activity. Here, we define the intrinsic electrophysiology of a different nongranule interneuronal cell type in the GCL described by Ramón y Cajal, sparsely spiny Golgi cells in the rat OB. Golgi cells exhibit two distinct firing modes depending on the membrane potential: tonic firing and bursting. Golgi cells also generate rebound bursts following the offset of hyperpolarizing steps. We find that both low-threshold burst responses to depolarizing inputs and rebound bursts are blocked by nickel, an antagonist of T-type voltage-gated Ca2+ current. The state-dependent firing behavior we report in OB Golgi cells suggests that the function of these interneurons may dynamically shift from providing rhythmic potent inhibition of postsynaptic target neurons at sniffing frequencies to tonic, subtractive inhibition based on centrifugal modulatory input.


Assuntos
Interneurônios/fisiologia , Potenciais da Membrana/fisiologia , Bulbo Olfatório/fisiologia , Animais , Feminino , Interneurônios/citologia , Masculino , Bulbo Olfatório/citologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
8.
J Neurosci ; 33(6): 2494-506, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392677

RESUMO

Within the dorsal lateral geniculate nucleus (dLGN) of the thalamus, retinal ganglion cell (RGC) projections excite thalamocortical (TC) cells that in turn relay visual information to the cortex. Local interneurons in the dLGN regulate the output of TC cells by releasing GABA from their axonal boutons and specialized dendritic spines. Here we examine the functional role of these highly specialized interneurons and how they inhibit TC cells in mouse brain slices. It was widely thought that activation of metabotropic glutamate receptor type 5 (mGluR5) on interneuron spines leads to local GABA release restricted to sites receiving active RGC inputs. We reexamined experiments that supported this view, and found that in the presence of TTX, mGluR5 agonists evoked GABA release that could instead be explained by interneuron depolarization and widespread intracellular calcium increases. We also examined GABA release evoked by RGC activation and found that high-frequency stimulation induces a long-lasting subthreshold afterdepolarization, persistent firing, or prolonged plateau potentials in interneurons and evokes sustained GABA release. mGluR5 antagonists virtually eliminated sustained spiking and the resulting widespread calcium-signals, and reduced inhibition by >50%. The remaining inhibition appeared to be mediated by a fraction of interneurons in which plateau potentials produced large and widespread calcium increases. Local calcium signals required for local GABA release were not observed. These findings indicate that, contrary to the previous view, RGC activation does not simply evoke localized GABA release by activating mGluR5, rather, synaptic activation of mGluR5 acts primarily by depolarizing interneurons and evoking widespread dendritic GABA release.


Assuntos
Corpos Geniculados/fisiologia , Inibição Neural/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Receptor de Glutamato Metabotrópico 5 , Células Ganglionares da Retina/fisiologia , Tálamo/fisiologia , Ácido gama-Aminobutírico/metabolismo
9.
PLoS Biol ; 8(4): e1000348, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20386723

RESUMO

In many brain regions, inhibition is mediated by numerous classes of specialized interneurons, but within the rodent dorsal lateral geniculate nucleus (dLGN), a single class of interneuron is present. dLGN interneurons inhibit thalamocortical (TC) neurons and regulate the activity of TC neurons evoked by retinal ganglion cells (RGCs), thereby controlling the visually evoked signals reaching the cortex. It is not known whether neuromodulation can regulate interneuron firing mode and the resulting inhibition. Here, we examine this in brain slices. We find that cholinergic modulation regulates the output mode of these interneurons and controls the resulting inhibition in a manner that is dependent on the level of afferent activity. When few RGCs are activated, acetylcholine suppresses synaptically evoked interneuron spiking, and strongly reduces disynaptic inhibition. In contrast, when many RGCs are coincidently activated, single stimuli promote the generation of a calcium spike, and stimulation with a brief train evokes prolonged plateau potentials lasting for many seconds that in turn lead to sustained inhibition. These findings indicate that cholinergic modulation regulates feedforward inhibition in a context-dependent manner.


Assuntos
Acetilcolina/metabolismo , Interneurônios/metabolismo , Inibição Neural/fisiologia , Receptor Muscarínico M2/metabolismo , Tálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica , Eletrofisiologia , Corpos Geniculados/citologia , Corpos Geniculados/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Inibição Neural/efeitos dos fármacos , Neurônios/metabolismo , Células Ganglionares da Retina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
10.
J Neurosci ; 27(41): 10969-81, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17928438

RESUMO

The olfactory bulb is a second-order brain region that connects sensory neurons with cortical areas. However, the olfactory bulb does not appear to play a simple relay role and is subject instead to extensive local and extrinsic synaptic influences. Prime among the external, or centrifugal, inputs is the dense cholinergic innervation from the basal forebrain, which terminates in both the granule cell and plexiform layers. Cholinergic inputs to the bulb have been implicated in olfactory working memory tasks in rodents and may be related to olfactory deficits reported in people with neurodegenerative disorders that involve basal forebrain neurons. In this study, we use whole-cell recordings from acute rat slices to demonstrate that one function of this input is to potentiate the excitability of GABAergic granule cells and thereby modulate inhibitory drive onto mitral cells. This increase in granule cell excitability is mediated by a concomitant decrease in the normal afterhyperpolarization response and augmentation of an afterdepolarization, both triggered by pirenzepine-sensitive M1 receptors. The afterdepolarization was dependent on elevations in intracellular calcium and appeared to be mediated by a calcium-activated nonselective cation current (I(CAN)). Near firing threshold, depolarizing inputs could evoke quasipersistent firing characterized by irregular discharges that lasted, on average, for 2 min. In addition to regulating the excitability of the primary interneuronal subtype in the bulb, M1 receptors regulate the degree of adaptation that occurs during repetitive sniffing-like inputs and may therefore play a critical role in regulating short-term plasticity in the olfactory system.


Assuntos
Potenciais de Ação/fisiologia , Inibição Neural/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Receptores Muscarínicos/fisiologia , Animais , Rede Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley
11.
J Neurosci ; 27(21): 5621-32, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17522307

RESUMO

Inhibition generated by granule cells, the most common GABAergic cell type in the olfactory bulb, plays a critical role in shaping the output of the olfactory bulb. However, relatively little is known about the synaptic mechanisms responsible for activating these interneurons in addition to the specialized dendrodendritic synapses located on distal dendrites. Using two-photon guided minimal stimulation in acute rat brain slices, we found that distal and proximal excitatory synapses onto granule cells are functionally distinct. Proximal synapses arise from piriform cortical neurons and facilitate with paired-pulse stimulation, whereas distal dendrodendritic synapses generate EPSCs with slower kinetics that depress with paired stimulation. Proximal cortical feedback inputs can relieve the tonic Mg block of NMDA receptors (NMDARs) at distal synapses and gate dendrodendritic inhibition onto mitral cells. Most excitatory synapses we examined onto granule cells activated both NMDARs and AMPA receptors, whereas a subpopulation appeared to be NMDAR silent. The convergence of two types of excitatory inputs onto GABAergic granule cells provides a novel mechanism for regulating the degree of interglomerular processing of sensory input in the olfactory bulb through piriform cortex/olfactory bulb synaptic interactions.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Sinapses/fisiologia , Animais , Ratos , Ratos Sprague-Dawley
12.
Neuron ; 49(6): 889-904, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16543136

RESUMO

Inhibitory local circuits in the olfactory bulb play a critical role in determining the firing patterns of output neurons. However, little is known about the circuitry in the major plexiform layers of the olfactory bulb that regulate this output. Here we report the first electrophysiological recordings from Blanes cells, large stellate-shaped interneurons located in the granule cell layer. We find that Blanes cells are GABAergic and generate large I(CAN)-mediated afterdepolarizations following bursts of action potentials. Using paired two-photon guided intracellular recordings, we show that Blanes cells have a presumptive axon and monosynaptically inhibit granule cells. Sensory axon stimulation evokes barrages of EPSPs in Blanes cells that trigger long epochs of persistent spiking; this firing mode was reset by hyperpolarizing membrane potential steps. Persistent firing in Blanes cells may represent a novel mechanism for encoding short-term olfactory information through modulation of tonic inhibitory synaptic input onto bulbar neurons.


Assuntos
Interneurônios/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Bulbo Olfatório/citologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Animais Recém-Nascidos , Cádmio/farmacologia , Quelantes/farmacologia , Diagnóstico por Imagem/métodos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Ácido Egtázico/farmacologia , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Iluminação , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Rede Nervosa/citologia , Compostos Orgânicos/metabolismo , Técnicas de Patch-Clamp/métodos , Piridazinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Tempo de Reação/efeitos da radiação , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...