Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 9(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050406

RESUMO

Primary coenzyme Q10 (CoQ10) deficiency is unique among mitochondrial respiratory chain disorders in that it is potentially treatable if high-dose CoQ10 supplements are given in the early stages of the disease. While supplements improve peripheral abnormalities, neurological symptoms are only partially or temporarily ameliorated. The reasons for this refractory response to CoQ10 supplementation are unclear, however, a contributory factor may be the poor transfer of CoQ10 across the blood-brain barrier (BBB). The aim of this study was to investigate mechanisms of CoQ10 transport across the BBB, using normal and pathophysiological (CoQ10 deficient) cell culture models. The study identifies lipoprotein-associated CoQ10 transcytosis in both directions across the in vitro BBB. Uptake via SR-B1 (Scavenger Receptor) and RAGE (Receptor for Advanced Glycation Endproducts), is matched by efflux via LDLR (Low Density Lipoprotein Receptor) transporters, resulting in no "net" transport across the BBB. In the CoQ10 deficient model, BBB tight junctions were disrupted and CoQ10 "net" transport to the brain side increased. The addition of anti-oxidants did not improve CoQ10 uptake to the brain side. This study is the first to generate in vitro BBB endothelial cell models of CoQ10 deficiency, and the first to identify lipoprotein-associated uptake and efflux mechanisms regulating CoQ10 distribution across the BBB. The results imply that the uptake of exogenous CoQ10 into the brain might be improved by the administration of LDLR inhibitors, or by interventions to stimulate luminal activity of SR-B1 transporters.

2.
J Control Release ; 324: 644-656, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32512014

RESUMO

The field of brain drug delivery faces many challenges that hinder development and testing of novel therapies for clinically important central nervous system disorders. Chief among them is how to deliver large biologics across the highly restrictive blood-brain barrier. Non-ionic surfactant vesicles (NISV) have long been used as a drug delivery platform for cutaneous applications and have benefits over comparable liposomes in terms of greater stability, lower cost and suitability for large scale production. Here we describe a glucosamine-coated NISV, for blood-brain barrier GLUT1 targeting, capable of traversing the barrier and delivering active antibody to cells within the brain. In vitro, we show glucosamine vesicle transcytosis across the blood-brain barrier with intact cargo, which is partially dynamin-dependent, but is clathrin-independent and does not associate with sorting endosome marker EEA1. Uptake of vesicles into astrocytes follows a more classical pathway involving dynamin, clathrin, sorting endosomes and Golgi trafficking where the cargo is released intracellularly. In vivo, glucosamine-coated vesicles are superior to uncoated or transferrin-coated vesicles for delivering cargo to the mouse brain. Finally, mice infected with Venezuelan equine encephalitis virus (VEEV) were successfully treated with anti-VEEV monoclonal antibody Hu1A3B-7 delivered in glucosamine-coated vesicles and had improved survival and reduced brain tissue virus levels. An additional benefit was that the treatment also reduced viral load in peripheral tissues. The data generated highlights the huge potential of glucosamine-decorated NISV as a drug delivery platform with wider potential applications.


Assuntos
Barreira Hematoencefálica , Vírus da Encefalite Equina Venezuelana , Animais , Glucosamina , Cavalos , Camundongos , Tensoativos , Transcitose
3.
Fluids Barriers CNS ; 17(1): 10, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32036786

RESUMO

BACKGROUND: Idiopathic intracranial hypertension (IIH) is a neurological disorder characterised by raised cerebrospinal fluid (CSF) pressure in the absence of any intracranial pathology. IIH mainly affects women with obesity between the ages of 15 and 45. Two possible mechanisms that could explain the increased CSF pressure in IIH are excessive CSF production by the choroid plexus (CP) epithelium or impaired CSF drainage from the brain. However, the molecular mechanisms controlling these mechanisms in IIH remain to be determined. METHODS: In vivo ventriculo-cisternal perfusion (VCP) and variable rate infusion (VRI) techniques were used to assess changes in rates of CSF secretion and resistance to CSF drainage in female and male Wistar rats fed either a control (C) or high-fat (HF) diet (under anaesthesia with 20 µl/100 g medetomidine, 50 µl/100 g ketamine i.p). In addition, CSF secretion and drainage were assessed in female rats following treatment with inflammatory mediators known to be elevated in the CSF of IIH patients: C-C motif chemokine ligand 2 (CCL2), interleukin (IL)-17 (IL-17), IL-6, IL-1ß, tumour necrosis factor-α (TNF-α), as well as glucocorticoid hydrocortisone (HC). RESULTS: Female rats fed the HF diet had greater CSF secretion compared to those on control diet (3.18 ± 0.12 µl/min HF, 1.49 ± 0.15 µl/min control). Increased CSF secretion was seen in both groups following HC treatment (by 132% in controls and 114% in HF) but only in control rats following TNF-α treatment (137% increase). The resistance to CSF drainage was not different between control and HF fed female rats (6.13 ± 0.44 mmH2O min/µl controls, and 7.09 ± 0.26 mmH2O min/µl HF). and when treated with CCL2, both groups displayed an increase in resistance to CSF drainage of 141% (controls) and 139% (HF) indicating lower levels of CSF drainage. CONCLUSIONS: Weight loss and therapies targeting HC, TNF-α and CCL2, whether separately or in combination, may be beneficial to modulate rates of CSF secretion and/or resistance to CSF drainage pathways, both factors likely contributing to the raised intracranial pressure (ICP) observed in female IIH patients with obesity.


Assuntos
Vazamento de Líquido Cefalorraquidiano/tratamento farmacológico , Líquido Cefalorraquidiano/efeitos dos fármacos , Citocinas/farmacologia , Dieta , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Citocinas/metabolismo , Feminino , Hidrodinâmica , Hipertensão Intracraniana/tratamento farmacológico , Pressão Intracraniana/efeitos dos fármacos , Masculino , Obesidade/complicações , Ratos Wistar
4.
Exp Gerontol ; 108: 181-188, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704639

RESUMO

Cerebrospinal fluid (CSF) circulates through the brain and has a unique composition reflecting the biological processes of the brain. Identifying ageing CSF biomarkers can aid in understanding the ageing process and interpreting CSF protein changes in neurodegenerative diseases. In this study, ovine CSF proteins from young (1-2 year old), middle aged (3-6 year old) and old (7-10 year old) sheep were systemically studied. CSF proteins were labelled with iTRAQ tagging reagents and fractionated by 2-dimensional high performance, liquid chromatography. Tryptic peptides were identified using MS/MS fragmentation ions for sequencing and quantified from iTRAQ reporter ion intensities at m/z 114, 115, 116 and 117. Two hundred thirty one peptides were detected, from which 143 proteins were identified. There were 52 proteins with >25% increase in concentrations in the old sheep compared to the young. 33 of them increased >25% but <50%, 13 increased >50% but <1 fold, 6 increased >1 fold [i.e. haptoglobin (Hp), haemoglobin, neuroendocrine protein 7B2, IgM, fibrous sheath interacting protein 1, vimentin]. There were 18 proteins with >25% decrease in concentrations in the old sheep compared to the young. 17 of them decreased >25% but <50%, and histone deacetylase 7 (HDAC7) was gradually decreased for over 80%. Glutathione S-transferase was decreased in middle aged CSF compared to both young and old CSF. The differential expressions of 3 proteins (Hp, neuroendocrine protein 7B2, IgM) were confirmed by immunoassays. These data expand our current knowledge regarding ovine CSF proteins, supply the necessary information to understand the ageing process in the brain and provide a basis for diagnosis of neurodegenerative diseases.


Assuntos
Envelhecimento/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteômica , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/diagnóstico , Ovinos , Espectrometria de Massas em Tandem
5.
Acta Neuropathol ; 135(3): 387-407, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29428972

RESUMO

Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K+, Ca2+, and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with CNS microvessels, and, finally, a mixture of CSF/ISF/waste products is normally cleared along the PVS of venules/veins as well as other pathways; such a system may or may not constitute a true 'circulation', but, at the least, suggests a comprehensive re-evaluation of the previously proposed 'glymphatic' concepts in favour of a new system better taking into account basic cerebrovascular physiology and fluid transport considerations.


Assuntos
Barreira Hematoencefálica/metabolismo , Líquido Cefalorraquidiano/metabolismo , Líquido Extracelular/metabolismo , Animais , Barreira Hematoencefálica/anatomia & histologia , Humanos , Hidrodinâmica
6.
Alzheimers Dement ; 14(3): 306-317, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29055813

RESUMO

INTRODUCTION: Synapse loss is the structural correlate of the cognitive decline indicative of dementia. In the brains of Alzheimer's disease sufferers, amyloid ß (Aß) peptides aggregate to form senile plaques but as soluble peptides are toxic to synapses. We previously demonstrated that Aß induces Dickkopf-1 (Dkk1), which in turn activates the Wnt-planar cell polarity (Wnt-PCP) pathway to drive tau pathology and neuronal death. METHODS: We compared the effects of Aß and of Dkk1 on synapse morphology and memory impairment while inhibiting or silencing key elements of the Wnt-PCP pathway. RESULTS: We demonstrate that Aß synaptotoxicity is also Dkk1 and Wnt-PCP dependent, mediated by the arm of Wnt-PCP regulating actin cytoskeletal dynamics via Daam1, RhoA and ROCK, and can be blocked by the drug fasudil. DISCUSSION: Our data add to the importance of aberrant Wnt signaling in Alzheimer's disease neuropathology and indicate that fasudil could be repurposed as a treatment for the disease.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Sinapses/metabolismo , Via de Sinalização Wnt , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacocinética , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Relação Dose-Resposta a Droga , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacocinética , Nootrópicos/farmacocinética , Cultura Primária de Células , RNA Mensageiro/metabolismo , Ratos , Sinapses/efeitos dos fármacos , Sinapses/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
7.
Int J Cancer ; 142(4): 779-791, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986926

RESUMO

Metastatic breast cancer affects long-term survival and is a major cause of cancer death for women worldwide. The Metalloprotease-Disintegrin ADAM8 promotes breast cancer development and brain metastasis in a mouse breast cancer model. Here, abundant ADAM8 expression was detected in primary human breast tumors and associated brain metastases. To investigate the function of ADAM8 in metastasis, MB-231 breast cancer cells with ADAM8 knockdown (MB-231_shA8) and scramble control cells (MB-231_shCtrl) were analyzed for their capability to develop metastases. In vitro, formation of metastatic complexes in hanging drops is dependent on ADAM8 and blocked by ADAM8 inhibition. MB-231_shA8 in contrast to MB-231_shCtrl cells were impaired in transmigration through an endothelial and a reconstituted blood-brain barrier. Out of 23 MMP and 22 ADAM genes, only the MMP-9 gene was affected by ADAM8 knockdown in MB-231_shA8 cells. Following re-expression of wild-type ADAM8 in contrast to ADAM8 lacking the cytoplasmic domain in MB-231_shA8 cells caused increased levels of activated pERK1/2 and pCREB (S133) that were associated with elevated MMP-9 transcription. Application of ADAM8 and MMP-9 antibodies reduced transmigration of MB-231 cells suggesting that ADAM8 affects transmigration of breast cancer cells by MMP-9 regulation. ADAM8-dependent transmigration was confirmed in Hs578t cells overexpressing ADAM8. Moreover, transmigration of MB-231 and Hs578t cells was significantly reduced for cells treated with an antibody directed against P-selectin glycoprotein ligand (PSGL-1), a substrate of ADAM8. From these data we conclude that ADAM8 promotes early metastatic processes such as transendothelial migration by upregulation of MMP-9 and shedding of PSGL-1 from breast cancer cells.


Assuntos
Proteínas ADAM/biossíntese , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células Endoteliais/patologia , Metaloproteinase 9 da Matriz/biossíntese , Proteínas de Membrana/biossíntese , Proteínas ADAM/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Técnicas de Cocultura , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 9 da Matriz/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Pessoa de Meia-Idade
8.
J Vis Exp ; (127)2017 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-28994773

RESUMO

The aim of this protocol presents an optimized procedure for the purification and cultivation of pBECs and to establish in vitro blood-brain barrier (BBB) models based on pBECs in mono-culture (MC), MC with astrocyte-conditioned medium (ACM), and non-contact co-culture (NCC) with astrocytes of porcine or rat origin. pBECs were isolated and cultured from fragments of capillaries from the brain cortices of domestic pigs 5-6 months old. These fragments were purified by careful removal of meninges, isolation and homogenization of grey matter, filtration, enzymatic digestion, and centrifugation. To further eliminate contaminating cells, the capillary fragments were cultured with puromycin-containing medium. When 60-95% confluent, pBECs growing from the capillary fragments were passaged to permeable membrane filter inserts and established in the models. To increase barrier tightness and BBB characteristic phenotype of pBECs, the cells were treated with the following differentiation factors: membrane permeant 8-CPT-cAMP (here abbreviated cAMP), hydrocortisone, and a phosphodiesterase inhibitor, RO-20-1724 (RO). The procedure was carried out over a period of 9-11 days, and when establishing the NCC model, the astrocytes were cultured 2-8 weeks in advance. Adherence to the described procedures in the protocol has allowed the establishment of endothelial layers with highly restricted paracellular permeability, with the NCC model showing an average transendothelial electrical resistance (TEER) of 1249 ± 80 Ω cm2, and paracellular permeability (Papp) for Lucifer Yellow of 0.90 10-6 ± 0.13 10-6 cm sec-1 (mean ± SEM, n=55). Further evaluation of this pBEC phenotype showed good expression of the tight junctional proteins claudin 5, ZO-1, occludin and adherens junction protein p120 catenin. The model presented can be used for a range of studies of the BBB in health and disease and, with the highly restrictive paracellular permeability, this model is suitable for studies of transport and intracellular trafficking.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Células Endoteliais/metabolismo , Animais , Células Endoteliais/citologia , Suínos
9.
Sci Adv ; 3(8): e1700362, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28782037

RESUMO

In recent years, scientists have created artificial microscopic and nanoscopic self-propelling particles, often referred to as nano- or microswimmers, capable of mimicking biological locomotion and taxis. This active diffusion enables the engineering of complex operations that so far have not been possible at the micro- and nanoscale. One of the most promising tasks is the ability to engineer nanocarriers that can autonomously navigate within tissues and organs, accessing nearly every site of the human body guided by endogenous chemical gradients. We report a fully synthetic, organic, nanoscopic system that exhibits attractive chemotaxis driven by enzymatic conversion of glucose. We achieve this by encapsulating glucose oxidase alone or in combination with catalase into nanoscopic and biocompatible asymmetric polymer vesicles (known as polymersomes). We show that these vesicles self-propel in response to an external gradient of glucose by inducing a slip velocity on their surface, which makes them move in an extremely sensitive way toward higher-concentration regions. We finally demonstrate that the chemotactic behavior of these nanoswimmers, in combination with LRP-1 (low-density lipoprotein receptor-related protein 1) targeting, enables a fourfold increase in penetration to the brain compared to nonchemotactic systems.


Assuntos
Barreira Hematoencefálica/metabolismo , Quimiotaxia , Polímeros/química , Polímeros/metabolismo , Algoritmos , Transporte Biológico , Difusão , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Humanos , Modelos Teóricos , Nanoestruturas/química , Nanotecnologia , Polímeros/síntese química
10.
Clin Exp Pharmacol Physiol ; 43(9): 844-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27220110

RESUMO

Transthyretin (TTR) is a binding protein for the thyroid hormone thyroxine (T4 ), retinol and ß-amyloid peptide. TTR aids the transfer of T4 from the blood to the cerebrospinal fluid (CSF), but also prevents T4 loss from the blood-CSF barrier. It is, however, unclear whether TTR affects the clearance of ß-amyloid from the CSF. This study aimed to investigate roles of TTR in ß-amyloid and T4 efflux from the CSF. Eight-week-old 129sv male mice were anaesthetized and their lateral ventricles were cannulated. Mice were infused with artificial CSF containing (125) I-T4 /(3) H-mannitol, or (125) I-Aß40/(3) H-inulin, in the presence or absence of TTR. Mice were decapitated at 2, 4, 8, 16, 24 minutes after injection. The whole brain was then removed and divided into different regions. The radioactivities in the brain were determined by liquid scintillation counting. At baseline, the net uptake of (125) I-T4 into the brain was significantly higher than that of (125) I-Aß40, and the half time for efflux was shorter ((125) I-T4 , 5.16; (3) H-mannitol, 7.44; (125) I-Aß40, 8.34; (3) H-inulin, 10.78 minutes). The presence of TTR increased the half time for efflux of (125) I-T4 efflux, and caused a noticeable increase in the uptake of (125) I-T4 and (125) I-Aß40 in the choroid plexus, whilst uptakes of (3) H-mannitol and (3) H-inulin remained similar to control experiments. This study indicates that thyroxine and amyloid peptide effuse from the CSF using different transporters. TTR binds to thyroxine and amyloid peptide to prevent the loss of thyroxine from the brain and redistribute amyloid peptide to the choroid plexus.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Pré-Albumina/farmacologia , Tiroxina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo
12.
J Control Release ; 224: 22-32, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26742944

RESUMO

Earlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNT's brain distribution following intravenous injection. γ-Scintigraphy quantified the uptake of studied radiolabelled f-MWNT in the whole brain parenchyma and capillaries while 3D-single photon emission computed tomography/computed tomography imaging and autoradiography illustrated spatial distribution within various brain regions. Raman and multiphoton luminescence together with transmission electron microscopy confirmed the presence of intact f-MWNT in mouse brain, in a label-free manner. The results evidenced the presence of f-MWNT in mice brain parenchyma, in addition to brain endothelium. Such information on the rate and extent of regional and cellular brain distribution is needed before further implementation into neurological therapeutics can be made.


Assuntos
Encéfalo/metabolismo , Nanotubos de Carbono , Animais , Autorradiografia , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Capilares/metabolismo , Dexametasona/farmacologia , Portadores de Fármacos , Endotélio/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Análise Espectral Raman , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
13.
J Control Release ; 225: 217-29, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26809004

RESUMO

Brain glioblastoma and neurodegenerative diseases are still largely untreated due to the inability of most drugs to cross the blood-brain barrier (BBB). Nanoparticles have emerged as promising tools for drug delivery applications to the brain; in particular carbon nanotubes (CNTs) that have shown an intrinsic ability to cross the BBB in vitro and in vivo. Angiopep-2 (ANG), a ligand for the low-density lipoprotein receptor-related protein-1 (LRP1), has also shown promising results as a targeting ligand for brain delivery using nanoparticles (NPs). Here, we investigate the ability of ANG-targeted chemically-functionalised multi-walled carbon nanotubes (f-MWNTs) to cross the BBB in vitro and in vivo. ANG was conjugated to wide and thin f-MWNTs creating w-MWNT-ANG and t-MWNT-ANG, respectively. All f-MWNTs were radiolabelled to facilitate quantitative analyses by γ-scintigraphy. ANG conjugation to f-MWNTs enhanced BBB transport of w- and t-MWNTs-ANG compared to their non-targeted equivalents using an in vitro co-cultured BBB model consisting of primary porcine brain endothelial cells (PBEC) and primary rat astrocytes. Additionally, following intravenous administration w-MWNTs-ANG showed significantly higher whole brain uptake than the non-targeted w-MWNT in vivo reaching ~2% injected dose per g of brain (%ID/g) within the first hour post-injection. Furthermore, using a syngeneic glioma model, w-MWNT-ANG showed enhanced uptake in glioma brain compared to normal brain at 24h post-injection. t-MWNTs-ANG, on the other hand, showed higher brain accumulation than w-MWNTs. However, no significant differences were observed between t-MWNT and t-MWNT-ANG indicating the importance of f-MWNTs diameter towards their brain accumulation. The inherent brain accumulation ability of f-MWNTs coupled with improved brain-targeting by ANG favours the future clinical applications of f-MWNT-ANG to deliver active therapeutics for brain glioma therapy.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos/administração & dosagem , Nanotubos de Carbono , Peptídeos/administração & dosagem , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Astrócitos/metabolismo , Transporte Biológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Células Endoteliais/metabolismo , Feminino , Glioma/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/química , Peptídeos/química , Peptídeos/farmacocinética , Ratos Wistar , Suínos
14.
Biomaterials ; 53: 437-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890741

RESUMO

Carbon nanotubes (CNTs) are a novel nanocarriers with interesting physical and chemical properties. Here we investigate the ability of amino-functionalized multi-walled carbon nanotubes (MWNTs-NH3(+)) to cross the Blood-Brain Barrier (BBB) in vitro using a co-culture BBB model comprising primary porcine brain endothelial cells (PBEC) and primary rat astrocytes, and in vivo following a systemic administration of radiolabelled f-MWNTs. Transmission Electron microscopy (TEM) confirmed that MWNTs-NH3(+) crossed the PBEC monolayer via energy-dependent transcytosis. MWNTs-NH3(+) were observed within endocytic vesicles and multi-vesicular bodies after 4 and 24 h. A complete crossing of the in vitro BBB model was observed after 48 h, which was further confirmed by the presence of MWNTs-NH3(+) within the astrocytes. MWNT-NH3(+) that crossed the PBEC layer was quantitatively assessed using radioactive tracers. A maximum transport of 13.0 ± 1.1% after 72 h was achieved using the co-culture model. f-MWNT exhibited significant brain uptake (1.1  ±  0.3% injected dose/g) at 5 min after intravenous injection in mice, after whole body perfusion with heparinized saline. Capillary depletion confirmed presence of f-MWNT in both brain capillaries and parenchyma fractions. These results could pave the way for use of CNTs as nanocarriers for delivery of drugs and biologics to the brain, after systemic administration.


Assuntos
Barreira Hematoencefálica , Encéfalo/metabolismo , Nanotubos de Carbono , Animais , Técnicas de Cocultura , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Transmissão e Varredura , Nanotubos de Carbono/toxicidade , Ácido Pentético/farmacocinética , Ratos , Ratos Wistar , Suínos
15.
Adv Pharmacol ; 71: 147-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25307216

RESUMO

The restrictive nature of the blood-brain barrier means that cellular machinery must be in place to deliver macromolecules to the brain. This is achieved by transcytosis which is more complex than initially supposed, both in terms of structure and regulation. Brain endothelial cells have relatively few pinocytotic vesicles compared to peripheral endothelia but can still deliver macromolecules via one of the three main types of vesicles: the most numerous clathrin-coated vesicles containing adaptor protein complex-2, the smaller caveolae formed from lipid raft domains of the plasma membrane, and the large fluid engulfing macropinocytotic vesicles. Both clathrin-coated vesicles and, to a lesser extent caveolae, endocytose plasma membrane receptors and their specific ligands which include insulin, transferrin, and lipoproteins. This receptor-mediated transcytosis (RMT) delivers the ligands to the brain and enables their receptors to be recycled back to the plasma membrane. However, once endocytosed, the ligands and/or receptors must be directed toward the correct plasma membrane and avoid degradation. How this is achieved has not been well studied although there is an important role for Rab GTPases in targeting vesicles to their correct location and enabling exocytosis. In this chapter, we discuss what is known about regulation of transcytosis in related cells such as the MDCK cell line and where are the gaps in our knowledge of brain endothelial transcytotic regulation. We discuss how RMT has been exploited to deliver therapeutic drugs to the brain and the importance of further investigation in this area to improve drug delivery.


Assuntos
Barreira Hematoencefálica/metabolismo , Transcitose , Animais , Células Endoteliais/metabolismo , Humanos , Preparações Farmacêuticas/metabolismo , Vesículas Transportadoras/metabolismo
16.
PLoS One ; 8(10): e77053, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204733

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF(-/-), or p53(-/-)), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Benzimidazóis/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Indanos/farmacologia , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/farmacologia , Pirazóis/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Tiofenos/farmacologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Quinase 1 Polo-Like
17.
Exp Gerontol ; 47(4): 323-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22532968

RESUMO

Studies have shown that ageing alone can cause increases in the concentrations of many cerebrospinal fluid (CSF) proteins. Therefore, CSF protein concentrations must be interpreted with caution before concluding that the increased concentrations of certain proteins can be used as disease-specific biomarkers. Age-related reduction in CSF turnover has been shown to have a significant concentrating effect on CSF proteins from young to old. As a result, CSF protein concentrations need to be corrected with age-specific turnovers first before performing any data comparisons between different ages. This study applied the concept of CSF/plasma concentration ratios of plasma-derived proteins that is frequently used in the investigation of brain barrier integrity to calculate the amount of protein that enters the CSF from the plasma side in different age groups. Based on our calculations, proteins with molecular weights greater than 91.92 kDa for the young, 109.51 kDa for the middle-aged and 120 kDa for the old should not be able to cross the brain barriers of the blood-brain and blood-CSF barriers to enter the CSF from the plasma side. For proteins that can be derived from the choroid plexus (CP), brain, and plasma, the amount that crosses the barriers to enter the CSF from the plasma side will contribute to their measured total protein concentrations in the CSF. CP and brain production of these proteins can be calculated when turnover corrected CSF protein concentrations are further corrected by the amount of protein that crosses the barriers. In this study, CP and brain produced concentrations of transthyretin, retinol binding protein, alpha-1-antitrypsin, gelsolin, and lactotransferrin were calculated. The production of these proteins decreased with age with alpha-1-antitrypsin protein revealing the most substantial decrease of 86% from young (0.14±0.01 mg·dL(-1)) to old (0.02 mg·dL(-1)). In conclusion, measured CSF protein concentrations for proteins that can be derived from the CP, brain, and plasma need to be corrected by age-specific CSF turnovers and by the amount of protein that crosses the brain barriers first before their concentrations can be compared logically between different ages.


Assuntos
Envelhecimento/líquido cefalorraquidiano , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Proteínas do Líquido Cefalorraquidiano/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiologia , Plexo Corióideo/metabolismo , Feminino , Proteômica/métodos , Ovinos
18.
Biomark Med ; 5(6): 837-46, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103620

RESUMO

AIM: This study aimed to identify plasma protein changes in a rat model of ischemic stroke using a proteomic approach. MATERIALS & METHODS: Four male Sprague-Dawley rats (3-6 months old) were subjected to 90 min of left middle cerebral artery occlusion under anesthesia with 1.5% isoflurane in O(2)/air followed by 24-h reperfusion. Blood samples (~100 µl) were collected at baseline, at the end of 90-min middle cerebral artery occlusion and at 24-h postreperfusion. Brain injuries were assessed by MRI at 24-h postreperfusion. Quantitative comparison of global plasma protein expression was performed using 2D differential in-gel electrophoresis. Differentially expressed protein spots were identified using peptide sequencing tandem mass spectrometry. RESULTS: These rats had clear brain infarction in the left hemisphere detected by MRI. Thirty-three protein spots of plasma samples were differentially expressed following focal cerebral ischemia/reperfusion. These protein spots belonged to eight proteins. Six of them (α2-macroglobulin, complement C3, inter-α- trypsin inhibitor heavy chain H3, serum albumin, haptoglobin and transthyretin), which are a class of acute-phase proteins, changed significantly. CONCLUSION: This study describes the responses of young rats to focal cerebral ischemia and suggests that future studies should use aged animals to better mimic the clinical ischemic stroke setting.


Assuntos
Proteínas de Fase Aguda/análise , Ataque Isquêmico Transitório/sangue , Proteômica , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Corantes Fluorescentes/química , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
19.
Metallomics ; 3(3): 239-49, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21344071

RESUMO

Many forms of neurodegenerative disease, for instance Alzheimer's disease, Parkinson's disease, Friedreich's ataxia, Hallervorden Spatz syndrome and macular degeneration, are associated with elevated levels of redox active metals in the brain and eye. A logical therapeutic approach therefore, is to remove the toxic levels of these metals, copper and iron in particular, by selective chelation. The increased number of iron-selective chelators now available for clinical use has enhanced interest in this type of therapy. This review summarises the recent developments in the design of chelators for treatment of neurodegenerative disease, identifies some of the essential properties for such molecules and suggests some future strategies.


Assuntos
Quelantes de Ferro/química , Quelantes de Ferro/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Sequência de Aminoácidos , Cobre/isolamento & purificação , Cobre/metabolismo , Humanos , Ferro/isolamento & purificação , Ferro/metabolismo , Quelantes de Ferro/administração & dosagem , Quelantes de Ferro/farmacologia , Modelos Moleculares , Dados de Sequência Molecular
20.
J Med Chem ; 53(15): 5886-9, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20684616

RESUMO

This report presents that Deferiprone, the only clinically used 3-hydroxypyridin-4-one (HPO), is able to penetrate the blood-brain barrier (BBB) in guinea pigs, whereas its glucosylated analogue is unable to do so. This finding is contrary to published information suggesting that the glucosylation of HPOs is a viable means of enhancing the brain uptake of this group of compounds.


Assuntos
Barreira Hematoencefálica/metabolismo , Quelantes de Ferro/farmacocinética , Piridonas/farmacocinética , Animais , Deferiprona , Glicosilação , Cobaias , Masculino , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...