Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 9: 627654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026707

RESUMO

The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.


Assuntos
Animais Selvagens , COVID-19 , Animais , Regiões Árticas , Ecossistema , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Estados Unidos , Zoonoses/epidemiologia
2.
Int J Infect Dis ; 65: 93-97, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29017856

RESUMO

A hackathon is best described as an 'innovation marathon'. Derived from the words 'hacking' and 'marathon', it brings together multidisciplinary teams to collaborate intensely over a short period of time to define a problem, devise a solution, and design a working prototype. International scientific meetings are conducive to successful hackathons, providing an audience of expert professionals who describe challenges and ensure the proposed solutions address end-user needs. Collaborations with local organizations and academic centers are crucial to attracting complementary specialties such as IT advisors, engineers, and entrepreneurs to develop sustainable projects. The core process of first identifying and deconstructing a problem followed by solution iteration is applicable to challenges at workplaces around the world. Ultimately, this model can be used to drive innovation and catalyze change in the global health community. The planning, execution, and outcomes of a hackathon event organized in conjunction with the International Meeting on Emerging Diseases and Surveillance (IMED 2016) are described in this article. Physicians, public health practitioners, veterinarians, IT professionals, engineers, and entrepreneurs came together for 2days to develop solutions at the intersection of emerging infectious diseases and climate change. Projects that resulted from the IMED 2016 Hackathon included environmental impact assessment software for humanitarian organization relief efforts; enhanced communication tools to prevent disease outbreaks; a participatory mobile application to speed the elimination of rabies in Indonesia; integrated disease surveillance platforms; and an improved search function for infectious disease outbreak reports in the ProMED-mail network.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/terapia , Surtos de Doenças , Academias e Institutos , Mudança Climática , Saúde Global , Humanos , Sistemas de Informação/organização & administração , Sistemas de Informação/normas , Comunicação Interdisciplinar , Saúde Pública , Design de Software
3.
Emerg Infect Dis ; 21(8): 1285-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26196106

RESUMO

The growing field of digital disease detection, or epidemic intelligence, attempts to improve timely detection and awareness of infectious disease (ID) events. Early detection remains an important priority; thus, the next frontier for ID surveillance is to improve the recognition and monitoring of drivers (antecedent conditions) of ID emergence for signals that precede disease events. These data could help alert public health officials to indicators of elevated ID risk, thereby triggering targeted active surveillance and interventions. We believe that ID emergence risks can be anticipated through surveillance of their drivers, just as successful warning systems of climate-based, meteorologically sensitive diseases are supported by improved temperature and precipitation data. We present approaches to driver surveillance, gaps in the current literature, and a scientific framework for the creation of a digital warning system. Fulfilling the promise of driver surveillance will require concerted action to expand the collection of appropriate digital driver data.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis/epidemiologia , Notificação de Doenças/métodos , Internet/estatística & dados numéricos , Vigilância da População/métodos , Humanos , Internet/tendências
4.
Curr Top Microbiol Immunol ; 365: 83-100, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23633105

RESUMO

One Health approaches have tended to focus on closer collaboration among veterinarians and medical professionals, but remain unclear about how ecological approaches could be applied or how they might benefit public health and disease control. In this chapter, we review ecological concepts, and discuss their relevance to health, with an emphasis on emerging infectious diseases (EIDs). Despite the fact that most EIDs originate in wildlife, few studies account for the population, community, or ecosystem ecology of the host, reservoir, or vector. The dimensions of ecological approaches to public health that we propose in this chapter are, in essence, networks of population dynamics, community structure, and ecosystem matrices incorporating concepts of complexity, resilience, and biogeochemical processes.


Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Ecossistema , Saúde Pública , Zoonoses/prevenção & controle , Animais , Ecologia , Humanos , Dinâmica Populacional
5.
Oecologia ; 161(2): 313-24, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19471971

RESUMO

Aquatic food webs are subsidized by allochthonous resources but the utilization of these resources by consumers can be difficult to quantify. Stable isotope ratios of hydrogen (deuterium:hydrogen; deltaD) potentially distinguish allochthonous inputs because deltaD differs between terrestrial and aquatic primary producers. However, application of this tracer is limited by uncertainties regarding the trophic fractionation of deltaD and the contributions of H from environmental water (often called "dietary water") to consumer tissue H. We addressed these uncertainties using laboratory experiments, field observations, modeling, and a literature synthesis. Laboratory experiments that manipulated the deltaD of water and food for insects, cladoceran zooplankton, and fishes provided strong evidence that trophic fractionation of deltaD was negligible. The proportion of tissue H derived from environmental water was substantial yet variable among studies; estimates of this proportion, inclusive of lab, field, and literature data, ranged from 0 to 0.39 (mean 0.17 +/- 0.12 SD). There is a clear need for additional studies of environmental water. Accounting for environmental water in mixing models changes estimates of resource use, although simulations suggest that uncertainty about the environmental water contribution does not substantially increase the uncertainty in estimates of resource use. As long as this uncertainty is accounted for, deltaD may be a powerful tool for estimating resource use in food webs.


Assuntos
Aedes/química , Daphnia/química , Deutério/análise , Cadeia Alimentar , Água Doce/química , Truta/metabolismo , Animais , Cromatografia Gasosa , Simulação por Computador , Larva/química , Modelos Biológicos , Músculo Esquelético/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...