Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(44): 16974-16988, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37885068

RESUMO

The partitioning of semivolatile organic compounds (SVOCs) between the condensed and gas phases can have significant implications for the properties of aerosol particles. In addition to affecting size and composition, this partitioning can alter radiative properties and impact cloud activation processes. We present measurements and model predictions on how activity and pH influence the evaporation of SVOCs from particles to the gas phase, specifically investigating aqueous inorganic particles containing dicarboxylic acids (DCAs). The aerosols are studied at the single-particle level by using optical trapping and cavity-enhanced Raman spectroscopy. Optical resonances in the spectra enable precise size tracking, while vibrational bands allow real-time monitoring of pH. Results are compared to a Maxwell-type model that accounts for volatile and nonvolatile solutes in aqueous droplets that are held at a constant relative humidity. The aerosol inorganic-organic mixture functional group activity coefficients thermodynamic model and Debye-Hückel theory are both used to calculate the activities of the species present in the droplet. For DCAs, we find that the evaporation rate is highly sensitive to the particle pH. For acidity changes of approximately 1.5 pH units, we observe a shift from a volatile system to one that is completely nonvolatile. We also observe that the pH itself is not constant during evaporation; it increases as DCAs evaporate, slowing the rate of evaporation until it eventually ceases. Whether a DCA evaporates or remains a stable component of the droplet is determined by the difference between the lowest pKa of the DCA and the pH of the droplet.


Assuntos
Ácidos Dicarboxílicos , Compostos Orgânicos , Ácidos Dicarboxílicos/química , Termodinâmica , Aerossóis , Concentração de Íons de Hidrogênio
2.
Phys Chem Chem Phys ; 25(10): 7066-7089, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36852581

RESUMO

Aerosol particles are ubiquitous in the atmosphere, and currently contribute a large uncertainty to climate models. Part of the endeavour to reduce this uncertainty takes the form of improving our understanding of aerosol at the microphysical level, thus enabling chemical and physical processes to be more accurately represented in larger scale models. In addition to modeling efforts, there is a need to develop new instruments and methodologies to interrogate the physicochemical properties of aerosol. This perspective presents the development, theory, and application of optical trapping, a powerful tool for single particle investigations of aerosol. After providing an overview of the role of aerosol in Earth's atmosphere and the microphysics of these particles, we present a brief history of optical trapping and a more detailed look at its application to aerosol particles. We also compare optical trapping to other single particle techniques. Understanding the interaction of light with single particles is essential for interpreting experimental measurements. In the final part of this perspective, we provide the relevant formalism for understanding both elastic and inelastic light scattering for single particles. The developments discussed here go beyond Mie theory and include both how particle and beam shape affect spectra. Throughout the entirety of this work, we highlight numerous references and examples, mostly from the last decade, of the application of optical trapping to systems that are relevant to the atmospheric aerosol.

3.
Environ Sci Technol ; 56(7): 3941-3951, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312301

RESUMO

Brown carbon aerosol in the atmosphere contain light-absorbing chromophores that influence the optical scattering properties of the particles. These chromophores may be hydrophobic, such as PAHs, or water soluble, such as nitroaromatics, imidazoles, and other conjugated oxygen-rich molecules. Water-soluble chromophores are expected to exist in aqueous solution in the presence of sufficient water and will exhibit physical properties (e.g., size, refractive index, and phase morphology) that depend on the environmental relative humidity (RH). In this work, we characterize the RH-dependent properties of 4-nitrocatechol (4-NC) and its mixtures with ammonium sulfate, utilizing a single-particle levitation platform coupled with Mie resonance spectroscopy to probe the size, real part of the complex refractive index (RI), and phase morphology of individual micron-sized particles. We measure the hygroscopic growth properties of pure 4-NC and apply mixing rules to characterize the growth of mixtures with ammonium sulfate. We report the RI at 589 nm for these samples as a function of RH and explore the wavelength dependence of the RI at non-absorbing wavelengths. The real part of the RI at 589 nm was found to vary in the range 1.54-1.59 for pure 4-NC from 92.5 to 75% RH, with an estimated pure component RI of 1.70. The real part of the RI was also measured for mixtures of AS and 4-NC and ranged from 1.39 to 1.51 depending on the component ratio and RH. We went on to characterize phase transitions in mixed particles, identifying the onset RH of liquid-liquid phase separation (LLPS) and efflorescence transitions. Mixtures showed LLPS in the range of 85-76% RH depending on the molar ratio, while efflorescence typically fell between 22 and 42% RH. Finally, we characterized the imaginary part of the complex RI using an effective oscillator model to capture the wavelength-dependent absorption properties of the system.


Assuntos
Carbono , Água , Aerossóis/química , Sulfato de Amônio/química , Água/química , Molhabilidade
4.
J Phys Chem A ; 126(1): 109-118, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34964637

RESUMO

An optical trapping cell that is capable of suspending particles using two counter-propagating beams in a temperature-controlled environment is reported here. With this dual-beam optical trap, we are able to hold single micron-sized droplets at temperatures down to 253 K (-20 °C) for hours at a time and in metastable (supercooled) states. As particles are trapped at the shared focal points of two intense beams, strong cavity-enhanced Raman scattering (CERS) is observed and allows for high precision measurements of physical properties. Here, the evaporation of highly oxygenated organic systems was monitored using CERS and was used to determine temperature-dependent vapor pressures and enthalpies of vaporization. The wavelength- and temperature-dependent optical properties were also simultaneously retrieved using CERS.

5.
Environ Sci Technol ; 55(17): 11775-11783, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34382774

RESUMO

A growing body of research suggests the presence and long-range transport of microplastics in the atmosphere. However, the interactions between these microplastics and atmospheric aerosol are poorly understood. Environmental microplastics vary in color, morphology, and chemical composition and become oxidized over time by UV, mechanical, and biological action. Once introduced to the atmosphere, these microplastics will likely become mixed with atmospheric aerosol. Determining how microplastics interact with aerosol particles and how they may alter aerosol physical properties, including water uptake and loss, is necessary to understand the impact of these microplastics on our environment. Herein, we investigate the effect of microplastics on the water activity of bulk water and ammonium sulfate solutions. We compare a variety of plastic compositions and microplastic morphologies including plastics that have been aged by UV irradiation and mechanical forces in the lab. In addition, we investigate the water uptake and loss in microplastic samples through dynamic vapor sorption. We find an increase in total water sorption for UV-aged plastics compared to pristine plastics. Finally, we investigate the effect of fractional surface coverage on the equilibration time scale.


Assuntos
Microplásticos , Poluentes Químicos da Água , Sulfato de Amônio , Monitoramento Ambiental , Plásticos , Água , Poluentes Químicos da Água/análise , Molhabilidade
6.
Commun Chem ; 4(1): 170, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36697661

RESUMO

In situ and real-time characterization of aerosols is vital to several fundamental and applied research domains including atmospheric chemistry, air quality monitoring, or climate change studies. To date, digital holographic microscopy is commonly used to characterize dynamic nanosized particles, but optical traps are required. In this study, a novel integrated digital in-line holographic microscope coupled with a flow tube (Nano-DIHM) is demonstrated to characterize particle phase, shape, morphology, 4D dynamic trajectories, and 3D dimensions of airborne particles ranging from the nanoscale to the microscale. We demonstrate the application of Nano-DIHM for nanosized particles (≤200 nm) in dynamic systems without optical traps. The Nano-DIHM allows observation of moving particles in 3D space and simultaneous measurement of each particle's three dimensions. As a proof of concept, we report the real-time observation of 100 nm and 200 nm particles, i.e. polystyrene latex spheres and the mixture of metal oxide nanoparticles, in air and aqueous/solid/heterogeneous phases in stationary and dynamic modes. Our observations are validated by high-resolution scanning/transmission electron microscopy and aerosol sizers. The complete automation of software (Octopus/Stingray) with Nano-DIHM permits the reconstruction of thousands of holograms within an hour with 62.5 millisecond time resolution for each hologram, allowing to explore the complex physical and chemical processes of aerosols.

7.
Chem Commun (Camb) ; 56(63): 8928-8931, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32613960

RESUMO

The refractive index (RI) is a key quantity in calculating many aerosol properties required for climate models. To accurately describe the RI of aerosol, the wavelength and temperature dependence as well as the variation with aerosol water content must be considered. Aside from water, aged ambient aerosol can contain both inorganic salts and a myriad of organic molecules. Determining the optical properties of each organic molecule and their contribution to the aerosol as a whole would be an incredibly time consuming and, in many cases, intractable task. Using single aerosol particle spectroscopy measurements and an effective oscillator model, we are able to measure parameters that can be used to accurately calculate the wavelength-dependent RI of mixed organic-inorganic aqueous aerosol particles. Measured oscillator parameters are presented for a number of atmospherically relevant inorganic ions and surrogate organic species. Finally, the effect of temperature on the oscillator parameters is investigated.

8.
J Phys Chem A ; 124(9): 1811-1820, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32013433

RESUMO

Single-particle trapping is an effective strategy to explore the physical and optical properties of aerosol with high precision. Laser-based methods are commonly used to probe the size, optical properties, and composition of nonlight-absorbing droplets in optical and electrodynamic traps. However, these methods cannot be applied to droplets containing photoactive chromophores, and thus, single-particle methods have been restricted to only a subset of atmospherically relevant particle compositions. In this work, we explore the application of a broadband light scattering approach, Mie resonance spectroscopy, to simultaneously probe the size and the refractive index (RI) of droplets in a linear quadrupole electrodynamic balance. We examine the evaporation of poly(ethylene glycol)s and compare the calculated vapor pressures with literature values to benchmark the size accuracy without prior constraint on the RI. We then explore the hygroscopic growth and deliquescence of sodium chloride droplets, measuring RI at the deliquescence relative humidity and demonstrating agreement to literature values. These data allow the wavelength dependence of the RI of aqueous NaCl to be determined using a first-order Cauchy equation, and we effectively reproduce literature data from multiple techniques. We finally discuss measurements from a light-absorbing aqueous droplet containing humic acid and interpret the spectra via the imaginary component of the RI. The approach described here allows the radius of nonabsorbing droplets to be determined within 0.1%, the refractive index within 0.2%, and the first-order term in the Cauchy dispersion equation within ∼5%.

9.
J Opt Soc Am A Opt Image Sci Vis ; 36(12): 2089-2103, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873383

RESUMO

Determining the size and composition of core-shell particles using morphology-dependent resonances (MDRs) is a computationally intensive problem due to the large parameter space that needs to be searched during the fitting process. Very often, it is not even practical to consider a reasonable range of physical parameters due to time constraints, leading to restrictive assumptions concerning the system being studied. The lengthy computational time is so limiting that there has, to date, to the best of our knowledge, been no comprehensive study of fitting measured MDRs for core-shell particles. In this work, we address the issue of fitting speed by developing an algorithm that (i) reduces the multi-dimensional grid search to a one-dimensional search using a least squares method and (ii) implements a new method for calculating MDRs that is much faster than previous methods. With the program presented here, we analyze the best-fits for core-shell MDRs across a large range of physically relevant scenarios using noise levels typical for conventional spectroscopic experiments. For many cases, it has been found that excellent fits can be quickly determined. However, there are also some surprising situations where accurate best-fits are not possible (e.g., if only one mode order is present in the measured MDR set).

10.
Proc Natl Acad Sci U S A ; 116(40): 19880-19886, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527232

RESUMO

Advancements in designing complex models for atmospheric aerosol science and aerosol-cloud interactions rely vitally on accurately measuring the physicochemical properties of microscopic particles. Optical tweezers are a laboratory-based platform that can provide access to such measurements as they are able to isolate individual particles from an ensemble. The surprising ability of a focused beam of light to trap and hold a single particle can be conceptually understood in the ray optics regime using momentum transfer and Newton's second law. The same radiation pressure that results in stable trapping will also exert a deforming optical stress on the surface of the particle. For micron-sized aqueous droplets held in the air, the deformation will be on the order of a few nanometers or less, clearly not observable through optical microscopy. In this study, we utilize cavity-enhanced Raman scattering and a phenomenon known as thermal locking to measure small deformations in optically trapped droplets. With the aid of light-scattering calculations and a model that balances the hydrostatic pressure, surface tension, and optical pressure across the air-droplet interface, we can accurately determine surface tension from our measurements. Our approach is applied to 2 systems of atmospheric interest: aqueous organic and inorganic aerosol.

11.
J Phys Chem A ; 123(15): 3374-3382, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30901522

RESUMO

An accurate understanding of the equilibration timescale of organic aerosol particles with surrounding water vapor is difficult because of the strong concentration-dependent diffusivities that are present in these systems. We examine this problem along with the closely related problem of the time-dependent radius of a binary aerosol particle during the uptake or loss of water. The governing equations and boundary conditions are discussed and a boundary value problem is formulated and solved. The resulting expressions are applied to water uptake and loss in two systems of atmospheric importance: aqueous-inorganic particles and high-viscosity organic particles. Accuracy is evaluated through a comparison with numerical solutions. For particles whose diffusivity has a strong dependence on water concentration and whose viscosity remains above 1 Pa·s during water uptake or loss, the expression for the characteristic equilibration time is found to be in excellent agreement with numerical results. Moreover, it provides physical insights into mass transport processes.

12.
Phys Chem Chem Phys ; 20(25): 17038-17047, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29911705

RESUMO

A quantitative understanding of light scattering by small homogeneous particles requires accurate knowledge of particle geometry and complex refractive index, m = n + ik. In weakly absorbing particles, k can be on the order of 10-9, which is well below the detection limit of almost all light scattering based instruments. Here, we describe a dual-beam optical trap that can simultaneously determine n, k, and the radius, s, of weakly absorbing aerosol particles. We utilize cavity-enhanced Raman scattering to determine n and s and electromagnetic heating from the trapping laser itself to determine k. The relationship between particle size, the trapping cell conditions, the parameters of the trapping laser, and electromagnetic heating is thoroughly discussed and it is shown that the proper choice of a light scattering model is necessary to retrieve accurate values of k when fitting measurements. The phenomenon of optical multistability and its connection to thermal locking and thermal jumping is investigated through both modeling and measurements as understanding this behavior is essential when interpreting results from electromagnetic heating experiments. Measurements are made on three different atmospheric aerosol model systems and k as low as 5.91 × 10-9 are found.

13.
Appl Opt ; 57(16): 4601-4609, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877369

RESUMO

Methods for determining the size and refractive index of single, homogeneous, micrometer-sized aerosol particles using Mie resonance spectroscopy are studied using measurements from optically trapped particles and light-scattering calculations based on Mie theory. We consider both single-particle broadband light scattering and cavity-enhanced Raman scattering (CERS) and demonstrate that, when resonances observed in either type of spectroscopy are fitted using Mie theory, the accuracy of the best fits are similar. However, broadband measurements can yield more resonances than CERS, thus reducing the uncertainty in the retrieved parameters of best fit and increasing the range of particles that can be characterized. Resonance fitting methods are also compared to methods that fit the entire Mie scattering spectrum. Through calculations, it is shown that measured scattering spectra are sensitive to small changes in how light is collected, while Mie resonance positions are much less sensitive. This means that additional parameters are required to accurately fit entire light-scattering spectra using Mie theory, but these parameters are not needed to accurately determine Mie resonance positions.

14.
J Phys Chem A ; 121(42): 8176-8184, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28972372

RESUMO

Morphology-dependent resonances (MDRs) can serve as a sensitive probe of the size and composition of microspheres. While the utilization of MDRs to characterize homogeneous spheres is now routine, analysis of spherical particles with more complicated refractive index profiles can be extremely difficult and time consuming. In ultraviscous and glassy aerosol particles, the concentration profile of water during sorption often contains a sharp front that propagates from the particle surface to the particle center over time. Here we show that the MDR positions associated with this type of concentration profile closely match those of a spherical core-shell profile. Due to the similarities, a core-shell model can be used to simplify the analysis of MDR positions that are observed during water uptake by high-viscosity aerosol particles. We examined the applicability and limitations of this core-shell model in the tracking of water sorption by single particles. Overall, the core-shell model allows for the radial position of a sharp diffusion front to be readily found using MDR positions observed during water sorption, making the analysis of light-scattering measurements much faster and less error prone than previously used fitting schemes. Additionally, methods for calculating MDRs in spherical core-shell particles are also discussed.

15.
Phys Chem Chem Phys ; 19(5): 3922-3931, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28106191

RESUMO

A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. We discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the full problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.

16.
J Phys Chem A ; 120(49): 9759-9766, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973801

RESUMO

Isotopic exchange experiments that utilize D2O and H2O have received attention as a method for studying water diffusion in high viscosity aerosol particles. However, the mathematical models used to retrieve diffusion coefficients from these measurements have yet to be critically examined. Here, two models for the isotopic exchange of D2O and H2O in spherical particles are analyzed and compared. The primary difference between the two models is the choice of boundary condition at the surface of the spherical particle. In one model, it is assumed that the concentration of D2O at the surface is fixed, while in the other model, it is assumed that, at the particle surface, the concentration of D2O in the condensed phase is in equilibrium with D2O vapor. Closed-form expressions for the two boundary value problems that describe these physical models are found and discussed. Then, specific examples of aqueous droplets containing either sucrose, citric acid, and shikimic acid are examined with both models. It is found that at low relative humidities the choice of boundary condition has a negligible effect on the predicted lifetime of isotopic exchange, while at high relative humidities predicted lifetimes can differ by orders of magnitude. The implication of this result is that the choice of model can greatly affect diffusion coefficients retrieved from experimental measurements under certain conditions. Finally, discrepancies between diffusion coefficients measured using isotopic exchange and water sorption and desorption experiments are discussed.

17.
J Opt Soc Am A Opt Image Sci Vis ; 32(11): 2210-7, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26560936

RESUMO

A new method for determining the radius and refractive index of microspheres using Mie resonances is presented. Previous methods have relied on searching multidimensional space to find the radius and refractive index that minimize the difference between observed and calculated Mie resonances. For anything but simple refractive index functions, this process can be very time consuming. Here, we demonstrate that once the mode assignment for the observed Mie resonances is known, no search is necessary, and the radius and refractive index of best-fit can be found immediately. This superior and faster way to characterize microspheres using Mie resonances should supplant previous fitting algorithms. The derivation and implementation of the equations that give the parameters of best-fit are shown and discussed. Testing is performed on systems of physical interest, and the effect of noise on measured peak positions is investigated.

18.
J Opt Soc Am A Opt Image Sci Vis ; 32(6): 1053-62, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367038

RESUMO

The angular scattering of light from a homogeneous spherical particle in a zeroth-order Bessel beam is calculated using a generalized Lorenz-Mie theory. We investigate the dependence of the angular scattering on the semi-apex angle of the Bessel beam and discuss the major features of the resulting scattering plots. We also compare Bessel beam scattering to plane wave scattering and provide criterion for when the difference between the two cases can be considered negligible. Finally, we discuss a method for characterizing spherical particles using angular light scattering. This work is useful to researchers who are interested in characterizing particles trapped in optical beams using angular dependent light scattering measurements.

19.
Phys Chem Chem Phys ; 17(24): 15843-56, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26018300

RESUMO

A new experiment is presented for the measurement of single aerosol particle extinction efficiencies, Qext, combining cavity ring-down spectroscopy (CRDS, λ = 405 nm) with a Bessel beam trap (λ = 532 nm) in tandem with phase function (PF) measurements. This approach allows direct measurements of the changing optical cross sections of individual aerosol particles over indefinite time-frames facilitating some of the most comprehensive measurements of the optical properties of aerosol particles so far made. Using volatile 1,2,6-hexanetriol droplets, Qext is measured over a continuous radius range with the measured Qext envelope well described by fitted cavity standing wave (CSW) Mie simulations. These fits allow the refractive index at 405 nm to be determined. Measurements are also presented of Qext variation with RH for two hygroscopic aqueous inorganic systems ((NH4)2SO4 and NaNO3). For the PF and the CSW Mie simulations, the refractive index, nλ, is parameterised in terms of the particle radius. The radius and refractive index at 532 nm are determined from PFs, while the refractive index at 405 nm is determined by comparison of the measured Qext to CSW Mie simulations. The refractive indices determined at the shorter wavelength are larger than at the longer wavelength consistent with the expected dispersion behaviour. The measured values at 405 nm are compared to estimates from volume mixing and molar refraction mixing rules, with the latter giving superior agreement. In addition, the first single-particle Qext measurements for accumulation mode aerosol are presented for droplets with radii as small as ∼300 nm.

20.
Phys Chem Chem Phys ; 17(15): 10059-73, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25786190

RESUMO

We present a comprehensive evaluation of the variabilities and uncertainties present in determining the kinetics of water transport in ultraviscous aerosol droplets, alongside new measurements of the water transport timescale in sucrose aerosol. Measurements are performed on individual droplets captured using aerosol optical tweezers and the change in particle size during water evaporation or condensation is inferred from shifts in the wavelength of the whispering gallery mode peaks at which spontaneous Raman scattering is enhanced. The characteristic relaxation timescale (τ) for condensation or evaporation of water from viscous droplets following a change in gas phase relative humidity can be described by the Kohlrausch-Williams-Watts function. To adequately characterise the water transport kinetics and determine τ, sufficient time must be allowed for the particle to progress towards the final state. However, instabilities in the environmental conditions can prevent an accurate characterisation of the kinetics over such long time frames. Comparison with established thermodynamic and diffusional water transport models suggests the determination of τ is insensitive to the choice of thermodynamic treatment. We report excellent agreement between experimental and simulated evaporation timescales, and investigate the scaling of τ with droplet radius. A clear increase in τ is observed for condensation with increase in drying (wait) time. This trend is qualitatively supported by model simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...