Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 153: 1-10, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364402

RESUMO

OBJECTIVE: Structure-function coupling remains largely unknown in brain disorders. We studied this coupling during interictal epileptic discharges (IEDs), using graph signal processing in temporal lobe epilepsy (TLE). METHODS: We decomposed IEDs of 17 patients on spatial maps, i.e. network harmonics, extracted from a structural connectome. Harmonics were split in smooth maps (long-range interactions reflecting integration) and coarse maps (short-range interactions reflecting segregation) and were used to reconstruct the part of the signal coupled (Xc) and decoupled (Xd) from the structure, respectively. We analysed how Xc and Xd embed the IED energy over time, at global and regional level. RESULTS: For Xc, the energy was smaller than for Xd before the IED onset (p < .001), but became larger around the first IED peak (p < .05, cluster 2, C2). Locally, the ipsilateral mesial regions were significantly coupled to the structure over the whole epoch. The ipsilateral hippocampus increased its coupling during C2 (p < .01). CONCLUSIONS: At whole-brain level, segregation gives way to integrative processes during the IED. Locally, brain regions commonly involved in the TLE epileptogenic network increase their reliance on long-range couplings during IED (C2). SIGNIFICANCE: In TLE, integration mechanisms prevail during the IED and are localized in the ipsilateral mesial temporal regions.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Eletroencefalografia , Lobo Temporal , Encéfalo , Imageamento por Ressonância Magnética
2.
Neuroimage Clin ; 28: 102467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33395963

RESUMO

Epileptic networks, defined as brain regions involved in epileptic brain activity, have been mapped by functional connectivity in simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) recordings. This technique allows to define brain hemodynamic changes, measured by the Blood Oxygen Level Dependent (BOLD) signal, associated to the interictal epileptic discharges (IED), which together with ictal events constitute a signature of epileptic disease. Given the highly time-varying nature of epileptic activity, a dynamic functional connectivity (dFC) analysis of EEG-fMRI data appears particularly suitable, having the potential to identify transitory features of specific connections in epileptic networks. In the present study, we propose a novel method, defined dFC-EEG, that integrates dFC assessed by fMRI with the information recorded by simultaneous scalp EEG, in order to identify the connections characterised by a dynamic profile correlated with the occurrence of IED, forming the dynamic epileptic subnetwork. Ten patients with drug-resistant focal epilepsy were included, with different aetiology and showing a widespread (or multilobar) BOLD activation, defined as involving at least two distinct clusters, located in two different lobes and/or extended to the hemisphere contralateral to the epileptic focus. The epileptic focus was defined from the IED-related BOLD map. Regions involved in the occurrence of interictal epileptic activity; i.e., forming the epileptic network, were identified by a general linear model considering the timecourse of the fMRI-defined focus as main regressor. dFC between these regions was assessed with a sliding-window approach. dFC timecourses were then correlated with the sliding-window variance of the IED signal (VarIED), to identify connections whose dynamics related to the epileptic activity; i.e., the dynamic epileptic subnetwork. As expected, given the very different clinical picture of each individual, the extent of this subnetwork was highly variable across patients, but was but was reduced of at least 30% with respect to the initially identified epileptic network in 9/10 patients. The connections of the dynamic subnetwork were most commonly close to the epileptic focus, as reflected by the laterality index of the subnetwork connections, reported higher than the one within the original epileptic network. Moreover, the correlation between dFC timecourses and VarIED was predominantly positive, suggesting a strengthening of the dynamic subnetwork associated to the occurrence of IED. The integration of dFC and scalp IED offers a more specific description of the epileptic network, identifying connections strongly influenced by IED. These findings could be relevant in the pre-surgical evaluation for the resection or disconnection of the epileptogenic zone and help in reaching a better post-surgical outcome. This would be particularly important for patients characterised by a widespread pathological brain activity which challenges the surgical intervention.


Assuntos
Epilepsia , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Humanos
3.
Neuroimage Clin ; 22: 101776, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30927605

RESUMO

BACKGROUND: Effects of beta-amyloid accumulation on neuronal function precede the clinical manifestation of Alzheimer's disease (AD) by years and affect distinct cognitive brain networks. As previous studies suggest a link between beta-amyloid and dysregulation of excitatory and inhibitory neurotransmitters, we aimed to investigate the impact of GABA and glutamate on beta-amyloid related functional connectivity. METHODS: 29 cognitively unimpaired old-aged adults (age = 70.03 ±â€¯5.77 years) were administered 11C-Pittsburgh Compound B (PiB) positron-emission tomography (PET), and MRI at 7 Tesla (7T) including blood oxygen level dependent (BOLD) functional MRI (fMRI) at rest for measuring static and dynamic functional connectivity. An advanced 7T MR spectroscopic imaging (MRSI) sequence based on the free induction decay acquisition localized by outer volume suppression' (FIDLOVS) technology was used for gray matter specific measures of GABA and glutamate in the posterior cingulate and precuneus (PCP) region. RESULTS: GABA and glutamate MR-spectra indicated significantly higher levels in gray matter than in white matter. A global effect of beta-amyloid on functional connectivity in the frontal, occipital and inferior temporal lobes was observable. Interactive effects of beta-amyloid with gray matter GABA displayed positive PCP connectivity to the frontomedial regions, and the interaction of beta-amyloid with gray matter glutamate indicated positive PCP connectivity to frontal and cerebellar regions. Furthermore, decreased whole-brain but increased fronto-occipital and temporo-parietal dynamic connectivity was found, when GABA interacted with regional beta-amyloid deposits in the amygdala, frontal lobe, hippocampus, insula and striatum. CONCLUSIONS: GABA, and less so glutamate, may moderate beta-amyloid related functional connectivity. Additional research is needed to better characterize their interaction and potential impact on AD.


Assuntos
Envelhecimento/fisiologia , Peptídeos beta-Amiloides/metabolismo , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Ácido Glutâmico/metabolismo , Substância Cinzenta/fisiologia , Neuroimagem/métodos , Ácido gama-Aminobutírico/metabolismo , Idoso , Envelhecimento/metabolismo , Compostos de Anilina , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Conectoma/métodos , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Tiazóis
4.
Psychiatry Res Neuroimaging ; 269: 54-61, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28938222

RESUMO

Attention deficit hyperactivity disorder (ADHD) is accompanied by resting-state alterations, including abnormal activity, connectivity and asymmetry of the default-mode network (DMN). Concurrently, recent studies suggested a link between ADHD and the presence of polymorphisms within the gene BAIAP2 (i.e., brain-specific angiogenesis inhibitor 1-associated protein 2), known to be differentially expressed in brain hemispheres. The clinical and neuroimaging correlates of this polymorphism are still unknown. We investigated the association between BAIAP2 polymorphisms and DMN functional connectivity (FC) asymmetry as well as behavioral measures in ADHD adults. Resting-state fMRI was acquired from 30 ADHD and 15 healthy adults. For each subject, rs7210438 and rs8079626 within the gene BAIAP2 were genotyped. ADHD severity, impulsiveness and anger were assessed for the ADHD group. Using multivariate analysis of variance, we found that genetic features do have an impact on DMN FC asymmetry. In particular, polymorphism rs8079626 affects medial frontal gyrus and inferior parietal lobule connectivity asymmetry, lower for AA than AG/GG carriers. Further, when combining FC asymmetry and the presence of the rs8079626 variant, we successfully predicted increased externalization of anger in ADHD. In conclusion, a complex interplay between genetic vulnerability and inter-hemispherical DMN FC asymmetry plays a role in emotion regulation in adult ADHD.


Assuntos
Ira/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Cérebro/diagnóstico por imagem , Cérebro/fisiologia , Proteínas do Tecido Nervoso/genética , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem
5.
Methods Inf Med ; 54(3): 227-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24816333

RESUMO

INTRODUCTION: This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Neural Signals and Images". BACKGROUND: Voxel-based functional connectivity analysis is a common method for resting state fMRI data. However, correlations between the seed and other brain voxels are corrupted by random estimate errors yielding false connections within the functional connectivity map (FCmap). These errors must be taken into account for a correct interpretation of single-subject results. OBJECTIVES: We estimated the statistical range of random errors and propose two methods for an individual setting of correlation threshold for FCmaps. METHODS: We assessed the amount of random errors by means of surrogate time series and described its distribution within the brain. On the basis of these results, the FCmaps of the posterior cingulate cortex (PCC) from 15 healthy subjects were thresholded with two innovative methods: the first one consisted in the computation of a unique (global) threshold value to be applied to all brain voxels, while the second method is to set a different (local) threshold of each voxel of the FCmap. RESULTS: The distribution of random errors within the brain was observed to be homogeneous and, after thresholding with both methods, the default mode network areas were well identifiable. The two methods yielded similar results, however the application of a global threshold to all brain voxels requires a reduced computational load. The inter-subject variability of the global threshold was observed to be very low and not correlated with age. Global threshold values are also almost independent from the number of surrogates used for their computation, so the analyses can be optimized using a reduced number of surrogate time series. CONCLUSIONS: We demonstrated the efficacy of FCmaps thresholding based on random error estimation. This method can be used for a reliable single-subject analysis and could also be applied in clinical setting, to compute individual measures of disease progression or quantitative response to pharmacological or rehabilitation treatments.


Assuntos
Viés , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa , Análise de Regressão , Adulto Jovem
6.
Brain Imaging Behav ; 7(3): 335-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23686576

RESUMO

The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer's disease as well as attention-deficit/hyperactivity disorder and schizophrenia.


Assuntos
Imagem de Tensor de Difusão/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Lobo Parietal/anatomia & histologia , Lobo Temporal/anatomia & histologia , Adolescente , Adulto , Comportamento/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Mielinizadas/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Adulto Jovem
7.
Brain Struct Funct ; 218(4): 951-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22782432

RESUMO

Based on high-resolution diffusion tensor magnetic resonance imaging (DTI) tractographic analyses in 39 healthy adult subjects, we derived patterns of connections and measures of volume and biophysical parameters, such as fractional anisotropy (FA) for the human middle longitudinal fascicle (MdLF). Compared to previous studies, we found that the cortical connections of the MdLF in humans appear to go beyond the superior temporal (STG) and angular (AG) gyri, extending to the temporal pole (TP), superior parietal lobule (SPL), supramarginal gyrus, precuneus and the occipital lobe (including the cuneus and lateral occipital areas). Importantly, the MdLF showed a striking lateralized pattern with predominant connections between the TP, STG and AG on the left and TP, STG and SPL on the right hemisphere. In light of the results of the present study, and of the known functional role of the cortical areas interconnected by the MdLF, we suggested that this fiber pathway might be related to language, high order auditory association, visuospatial and attention functions.


Assuntos
Vias Neurais/anatomia & histologia , Lobo Parietal/anatomia & histologia , Lobo Temporal/anatomia & histologia , Adolescente , Adulto , Anisotropia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...