Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 10: 945, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417415

RESUMO

Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.

2.
Cell Death Dis ; 9(11): 1071, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341284

RESUMO

Congenital myotonic dystrophy type 1 (CDM1) is characterized by severe symptoms that affect patients from birth, with 40% mortality in the neonatal period and impaired skeletal muscle development. In this paper, we examined the relationship between autophagy and abnormal myogenic differentiation of CDM1 myoblasts. We investigated these pathological features at both ultrastructural and molecular levels, utilizing two CDM1 foetal myoblasts, CDM13 and CDM15, with 1800 and 3200 repeats, respectively. The congenital nature of these CDM1 myoblasts was confirmed by the high methylation level at the DMPK locus. Our results indicated that abnormal autophagy was independent of myogenic differentiation, as CDM13 myoblasts differentiated as well as control myoblasts but underwent autophagy like CDM15, displaying impaired differentiation. miRNA expression profiles revealed that CDM15 myoblasts failed to upregulate the complex network of myo-miRNAs under MYOD and MEF2A control, while this network was upregulated in CDM13 myoblasts. Interestingly, the abnormal differentiation of CDM15 myoblasts was associated with cellular stress accompanied by the induction of the interferon type 1 pathway (innate immune response). Indeed, inhibition of the interferon (IFN) type I pathway restores myogenic differentiation of CDM15 myoblasts, suggesting that the inappropriate activation of the innate immune response might contribute to impaired myogenic differentiation and severe muscle symptoms observed in some CDM1 patients. These findings open up the possibility of new therapeutic approaches to treat CDM1.


Assuntos
Autofagia , Interferon Tipo I/metabolismo , Desenvolvimento Muscular , Mioblastos/metabolismo , Distrofia Miotônica/patologia , Biópsia , Diferenciação Celular , Células Cultivadas , Retículo Endoplasmático/patologia , Inativação Gênica , Humanos , Fator Regulador 7 de Interferon/genética , Interferon Tipo I/genética , Fatores de Transcrição MEF2/metabolismo , MicroRNAs/metabolismo , Microscopia Eletrônica , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...