Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 14(1): 73, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303244

RESUMO

DrugTax is an easy-to-use Python package for small molecule detailed characterization. It extends a previously explored chemical taxonomy making it ready-to-use in any Artificial Intelligence approach. DrugTax leverages small molecule representations as input in one of their most accessible and simple forms (SMILES) and allows the simultaneously extraction of taxonomy information and key features for big data algorithm deployment. In addition, it delivers a set of tools for bulk analysis and visualization that can also be used for chemical space representation and molecule similarity assessment. DrugTax is a valuable tool for chemoinformatic processing and can be easily integrated in drug discovery pipelines. DrugTax can be effortlessly installed via PyPI ( https://pypi.org/project/DrugTax/ ) or GitHub ( https://github.com/MoreiraLAB/DrugTax ).

2.
Adv Protein Chem Struct Biol ; 131: 45-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871896

RESUMO

Cells suffer from perturbations by different stimuli, which, consequently, rise to individual alterations in their profile and function that may end up affecting the tissue as a whole. This is no different if we consider the effect of a therapeutic agent on a biological system. As cells are exposed to external ligands their profile can change at different single-omics levels. Detecting how these changes take place through different sequencing technologies is key to a better understanding of the effects of therapeutic agents. Single-cell RNA-sequencing stands out as one of the most common approaches for cell profiling and perturbation analysis. As a result, single-cell transcriptomics data can be integrated with other omics data sources, such as proteomics and epigenomics data, to clarify the perturbation effects and mechanism at the cell level. Appropriate computational tools are key to process and integrate the available information. This chapter focuses on the recent advances on ligand-induced perturbation and single-cell omics computational tools and algorithms, their current limitations, and how the deluge of data can be used to improve the current process of drug research and development.


Assuntos
Genômica , Metabolômica , Epigenômica , Ligantes , Fenótipo
3.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019775

RESUMO

Protein Hot-Spots (HS) are experimentally determined amino acids, key to small ligand binding and tend to be structural landmarks on protein-protein interactions. As such, they were extensively approached by structure-based Machine Learning (ML) prediction methods. However, the availability of a much larger array of protein sequences in comparison to determined tree-dimensional structures indicates that a sequence-based HS predictor has the potential to be more useful for the scientific community. Herein, we present SPOTONE, a new ML predictor able to accurately classify protein HS via sequence-only features. This algorithm shows accuracy, AUROC, precision, recall and F1-score of 0.82, 0.83, 0.91, 0.82 and 0.85, respectively, on an independent testing set. The algorithm is deployed within a free-to-use webserver at http://moreiralab.com/resources/spotone, only requiring the user to submit a FASTA file with one or more protein sequences.


Assuntos
Aminoácidos/química , Biologia Computacional/métodos , Aprendizado de Máquina , Proteínas/química , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sítios de Ligação , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas/metabolismo
4.
J Chem Inf Model ; 60(8): 3969-3984, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32692555

RESUMO

G-Protein coupled receptors (GPCRs) are involved in a myriad of pathways key for human physiology through the formation of complexes with intracellular partners such as G-proteins and arrestins (Arrs). However, the structural and dynamical determinants of these complexes are still largely unknown. Herein, we developed a computational big-data pipeline that enables the structural characterization of GPCR complexes with no available structure. This pipeline was used to study a well-known group of catecholamine receptors, the human dopamine receptor (DXR) family and its complexes, producing novel insights into the physiological properties of these important drug targets. A detailed description of the protein interfaces of all members of the DXR family (D1R, D2R, D3R, D4R, and D5R) and the corresponding protein interfaces of their binding partners (Arrs: Arr2 and Arr3; G-proteins: Gi1, Gi2, Gi3, Go, Gob, Gq, Gslo, Gssh, Gt2, and Gz) was generated. To produce reliable structures of the DXR family in complex with either G-proteins or Arrs, we performed homology modeling using as templates the structures of the ß2-adrenergic receptor (ß2AR) bound to Gs, the rhodopsin bound to Gi, and the recently acquired neurotensin receptor-1 (NTSR1) and muscarinic 2 receptor (M2R) bound to arrestin (Arr). Among others, the work demonstrated that the three partner groups, Arrs and Gs- and Gi-proteins, are all structurally and dynamically distinct. Additionally, it was revealed the involvement of different structural motifs in G-protein selective coupling between D1- and D2-like receptors. Having constructed and analyzed 50 models involving DXR, this work represents an unprecedented large-scale analysis of GPCR-intracellular partner interface determinants. All data is available at www.moreiralab.com/resources/dxr.


Assuntos
Arrestinas , Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Dopaminérgicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...