Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 119(4): 1062-1076, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36647784

RESUMO

AIMS: We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)]. METHODS AND RESULTS: hCMPs were generated in a fibrin scaffold. MI was induced in severe combined immunodeficiency (SCID) mice through permanent coronary artery (left anterior descending) ligation, followed by treatment with cardiac muscle patches. Animal groups included: MI heart treated with 3TCC-hCMP; with 4TCC-hCMP; MI heart treated with no patch (MI group) and sham group. Cardiac function was evaluated using echocardiography, and cell engraftment rate and infarct size were evaluated histologically at 4 weeks after patch transplantation. The results from experiments in cultured hCMPs demonstrate that the inclusion of cardiac fibroblast in 4TCC-hCMPs had (i) better organized sarcomeres; (ii) abundant structural, metabolic, and ion-channel markers of CM maturation; and (iii) greater conduction velocities (31 ± 3.23 cm/s, P < 0.005) and action-potential durations (APD50 = 365 ms ± 2.649, P < 0.0001; APD = 408 ms ± 2.757, P < 0.0001) than those (velocity and APD time) in 3TCC-hCMPs. Furthermore, 4TCC-hCMPs transplantation resulted in better cardiac function [ejection fraction (EF) = 49.18% ± 0.86, P < 0.05], reduced infarct size (22.72% ± 0.98, P < 0.05), and better engraftment (15.99% ± 1.56, P < 0.05) when compared with 3TCC-hCMPs (EF = 41.55 ± 0.92%, infarct size = 39.23 ± 4.28%, and engraftment = 8.56 ± 1.79%, respectively). CONCLUSION: Collectively, these observations suggest that the inclusion of hPSC-CFs during hCMP manufacture promotes hPSC-CM maturation and increases the potency of implanted hCMPs for improving cardiac recovery in mice model of MI.


Assuntos
Traumatismos Cardíacos , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Células-Tronco Pluripotentes , Humanos , Camundongos , Animais , Suínos , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/patologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Traumatismos Cardíacos/metabolismo
2.
Matrix Biol Plus ; 16: 100121, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36160687

RESUMO

The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.

3.
Front Bioeng Biotechnol ; 10: 908848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957645

RESUMO

Cardiomyocytes (CMs), endothelial cells (ECs), smooth-muscle cells (SMCs), and cardiac fibroblasts (CFs) differentiated from human induced-pluripotent stem cells (hiPSCs) are the fundamental components of cell-based regenerative myocardial therapy and can be used as in-vitro models for mechanistic studies and drug testing. However, newly differentiated hiPSC-CMs tend to more closely resemble fetal CMs than the mature CMs of adult hearts, and current techniques for improving CM maturation can be both complex and labor-intensive. Thus, the production of CMs for commercial and industrial applications will require more elementary methods for promoting CM maturity. CMs tend to develop a more mature phenotype when cultured as spheroids in a three-dimensional (3D) environment, rather than as two-dimensional monolayers, and the activity of ECs, SMCs, and CFs promote both CM maturation and electrical activity. Here, we introduce a simple and reproducible 3D-culture-based process for generating spheroids containing all four cardiac-cell types (i.e., cardiac spheroids) that is compatible with a wide range of applications and research equipment. Subsequent experiments demonstrated that the inclusion of vascular cells and CFs was associated with an increase in spheroid size, a decline in apoptosis, an improvement in sarcomere maturation and a change in CM bioenergetics.

4.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763350

RESUMO

Angiopoietin-2 (Ang-2) is a key mediator of vascular disease during sepsis, and elevated plasma levels of Ang-2 are associated with organ injury scores and poor clinical outcomes. We have previously observed that biomarkers of endothelial glycocalyx (EG) damage correlate with plasma Ang-2 levels, suggesting a potential mechanistic linkage between EG injury and Ang-2 expression during states of systemic inflammation. However, the cell signaling mechanisms regulating Ang-2 expression following EG damage are unknown. In the current study, we determined the temporal associations between plasma heparan sulfate (HS) levels as a marker of EG erosion and plasma Ang-2 levels in children with sepsis and in mouse models of sepsis. Second, we evaluated the role of shear stress-mediated 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling in Ang-2 expression following enzymatic HS cleavage from the surface of human primary lung microvascular endothelial cells (HLMVECs). We found that plasma HS levels peaked before plasma Ang-2 levels in children and mice with sepsis. Further, we discovered that impaired AMPK signaling contributed to increased Ang-2 expression following HS cleavage from flow-conditioned HLMVECs, establishing a paradigm by which Ang-2 may be upregulated during sepsis.


Assuntos
Angiopoietina-2 , Sepse , Proteínas Quinases Ativadas por AMP/metabolismo , Angiopoietina-2/metabolismo , Animais , Biomarcadores/metabolismo , Criança , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Glicocálix/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Transdução de Sinais
5.
iScience ; 25(3): 103824, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243219

RESUMO

Human cardiac-muscle patches (hCMPs) constructed from induced pluripotent stem cells derived cardiomyocytes (iCMs) can replicate the genetics of individual patients, and consequently be used for drug testing, disease modeling, and therapeutic applications. However, conventional hCMPs are relatively thin and contain iCMs with fetal cardiomyocyte structure and function. Here, we used our layer-by-layer (lbl) fabrication to construct thicker (>2.1 mm), triple-layered hCMPs, and then evaluated iCM maturity after ten days of standard culture (Control), static stretching (Stretched), or stretching with electrical stimulation at 15 or 22 V (Stretched+15V or Stretched+22V). Assessments of stained hCMPs suggested that expression and alignment of contractile proteins was greater in Stretched+22V, whereas quantification of mRNA abundance and protein expression indicated the Stretched+22V enhanced biomolecular maturation. Transmission electron microscope images indicated that stretching and electrical stimulation were associated with increases in development of Z-lines and gap junctions, and sarcomeres were significantly longer following any of the maturation protocols.

6.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34676829

RESUMO

The meager regenerative capacity of adult mammalian hearts appears to be driven by the proliferation of endogenous cardiomyocytes; thus, strategies targeting mechanisms of cardiomyocyte cell cycle regulation, such as the Hippo/Yes-associated protein (Hippo/Yap) pathway, could lead to the development of promising therapies for heart disease. The pharmacological product TT-10 increases cardiomyocyte proliferation by upregulating nuclear Yap levels. When intraperitoneal injections of TT-10 were administered to infarcted mouse hearts, the treatment promoted cardiomyocyte proliferation and was associated with declines in infarct size 1 week after administration, but cardiac function worsened at later time points. Here, we investigated whether encapsulating TT-10 into poly-lactic-co-glycolic acid nanoparticles (NPs) before administration could extend the duration of TT-10 delivery and improve the potency of TT-10 for myocardial repair. TT-10 was released from the TT-10-loaded NPs for up to 4 weeks in vitro, and intramyocardial injections of TT-10-delivered NPs stably improved cardiac function from week 1 to week 4 after administration to infarcted mouse hearts. TT-10-delivered NP treatment was also associated with significantly smaller infarcts at week 4, with increases in cardiomyocyte proliferation and nuclear Yap abundance and with declines in cardiomyocyte apoptosis. Thus, NP-mediated delivery appears to enhance both the potency and durability of TT-10 treatment for myocardial repair.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Nanopartículas/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Infarto do Miocárdio/fisiopatologia
7.
Front Bioeng Biotechnol ; 9: 674260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178964

RESUMO

Human induced-pluripotent stem cells (hiPSCs) can be efficiently differentiated into cardiomyocytes (hiPSC-CMs) via the GiWi method, which uses small-molecule inhibitors of glycogen synthase kinase (GSK) and tankyrase to first activate and then suppress Wnt signaling. However, this method is typically conducted in 6-well culture plates with two-dimensional (2D) cell sheets, and consequently, cannot be easily scaled to produce the large numbers of hiPSC-CMs needed for clinical applications. Cell suspensions are more suitable than 2D systems for commercial biomanufacturing, and suspended hiPSCs form free-floating aggregates (i.e., spheroids) that can also be differentiated into hiPSC-CMs. Here, we introduce a protocol for differentiating suspensions of hiPSC spheroids into cardiomyocytes that is based on the GiWi method. After optimization based on cardiac troponin T staining, the purity of hiPSC-CMs differentiated via our novel protocol exceeded 98% with yields of about 1.5 million hiPSC-CMs/mL and less between-batch purity variability than hiPSC-CMs produced in 2D cultures; furthermore, the culture volume could be increased ∼10-fold to 30 mL with no need for re-optimization, which suggests that this method can serve as a framework for large-scale hiPSC-CM production.

8.
Front Cell Dev Biol ; 9: 670504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937272

RESUMO

Engineered cardiac tissues fabricated from human induced pluripotent stem cells (hiPSCs) show promise for ameliorating damage from myocardial infarction, while also restoring function to the damaged left ventricular (LV) myocardium. For these constructs to reach their clinical potential, they need to be of a clinically relevant volume and thickness, and capable of generating synchronous and forceful contraction to assist the pumping action of the recipient heart. Design prerequisites include a structure thickness sufficient to produce a beneficial contractile force, prevascularization to overcome diffusion limitations and sufficient structural development to allow for maximal cell communication. Previous attempts to meet these prerequisites have been hindered by lack of oxygen and nutrient transport due to diffusion limits (100-200 µm) resulting in necrosis. This study employs a layer-by-layer (LbL) fabrication method to produce cardiac tissue constructs that meet these design prerequisites and mimic normal myocardium in form and function. Thick (>2 mm) cardiac tissues created from hiPSC-derived cardiomyocytes, -endothelial cells (ECs) and -fibroblasts (FBs) were assessed, in vitro, over a 4-week period for viability (<6% necrotic cells), cell morphology and functionality. Functional performance assessment showed enhanced t-tubule network development, gap junction communication as well as previously unseen, physiologically relevant conduction velocities (CVs) (>30 cm/s). These results demonstrate that LbL fabrication can be utilized successfully to create prevascularized, functional cardiac tissue constructs from hiPSCs for potential therapeutic applications.

9.
Front Pharmacol ; 12: 640182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746761

RESUMO

Nano-medicines that include nanoparticles, nanocomposites, small molecules, and exosomes represent new viable sources for future therapies for the dysfunction of cardiovascular system, as well as the other important organ systems. Nanomaterials possess special properties ranging from their intrinsic physicochemical properties, surface energy and surface topographies which can illicit advantageous cellular responses within the cardiovascular system, making them exceptionally valuable in future clinical translation applications. The success of nano-medicines as future cardiovascular theranostic agents requires a comprehensive understanding of the intersection between nanomaterial and the biomedical fields. In this review, we highlight some of the major types of nano-medicine systems that are currently being explored in the cardiac field. This review focusses on the major differences between the systems, and how these differences affect the specific therapeutic or diagnostic applications. The important concerns relevant to cardiac nano-medicines, including cellular responses, toxicity of the different nanomaterials, as well as cardio-protective and regenerative capabilities are discussed. In this review an overview of the current development of nano-medicines specific to the cardiac field is provided, discussing the diverse nature and applications of nanomaterials as therapeutic and diagnostic agents.

10.
Biomed Mater ; 16(3)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33053512

RESUMO

Cardiac tissue surrogates show promise for restoring mechanical and electrical function in infarcted left ventricular (LV) myocardium. For these cardiac surrogates to be usefulin vivo, they are required to support synchronous and forceful contraction over the infarcted region. These design requirements necessitate a thickness sufficient to produce a useful contractile force, an area large enough to cover an infarcted region, and prevascularization to overcome diffusion limitations. Attempts to meet these requirements have been hampered by diffusion limits of oxygen and nutrients (100-200 µm) leading to necrotic regions. This study demonstrates a novel layer-by-layer (LbL) fabrication method used to produce tissue surrogates that meet these requirements and mimic normal myocardium in form and function. Thick (1.5-2 mm) LbL cardiac tissues created from human induced pluripotent stem cell-derived cardiomyocytes and endothelial cells were assessed,in vitro, over a 4-week period for viability (<5.6 ± 1.4% nectrotic cells), cell morphology, viscoelastic properties and functionality. Viscoelastic properties of the cardiac surrogates were determined via stress relaxation response modeling and compared to native murine LV tissue. Viscoelastic characterization showed that the generalized Maxwell model of order 4 described the samples well (0.7

Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Miocárdio , Miócitos Cardíacos , Engenharia Tecidual/métodos
11.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32453715

RESUMO

The mortality of patients suffering from acute myocardial infarction is linearly related to the infarct size. As regeneration of cardiomyocytes from cardiac progenitor cells is minimal in the mammalian adult heart, we have explored a new therapeutic approach, which leverages the capacity of nanomaterials to release chemicals over time to promote myocardial protection and infarct size reduction. Initial screening identified 2 chemicals, FGF1 and CHIR99021 (a Wnt1 agonist/GSK-3ß antagonist), which synergistically enhance cardiomyocyte cell cycle in vitro. Poly-lactic-co-glycolic acid nanoparticles (NPs) formulated with CHIR99021 and FGF1 (CHIR + FGF1-NPs) provided an effective slow-release system for up to 4 weeks. Intramyocardial injection of CHIR + FGF1-NPs enabled myocardial protection via reducing infarct size by 20%-30% in mouse or pig models of postinfarction left ventricular (LV) remodeling. This LV structural improvement was accompanied by preservation of cardiac contractile function. Further investigation revealed that CHIR + FGF1-NPs resulted in a reduction of cardiomyocyte apoptosis and increase of angiogenesis. Thus, using a combination of chemicals and an NP-based prolonged-release system that works synergistically, this study demonstrates a potentially novel therapy for LV infarct size reduction in hearts with acute myocardial infarction.


Assuntos
Fator 1 de Crescimento de Fibroblastos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Nanopartículas , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
12.
J Mol Cell Cardiol ; 141: 1-10, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32169551

RESUMO

BACKGROUND: We have shown that genetic overexpression of cell cycle proteins can increase the proliferation of transplanted cardiomyocytes derived from human induced-pluripotent stem cells (hiPSC-CMs) in animal models of myocardial infarction (MI). Here, we introduce a new, non-genetic approach to promote hiPSC-CM cell cycle activity and proliferation in transplanted human cardiomyocyte patches (hCMPs). METHODS: Mice were randomly distributed into 5 experimental groups (n = 10 per group). One group underwent Sham surgery, and the other 4 groups underwent MI induction surgery followed by treatment with hCMPs composed of hiPSC-CMs and nanoparticles that contained CHIR99021 and FGF1 (the NPCF-hCMP group), with hCMPs composed of hiPSC-CMs and empty nanoparticles (the NPE-hCMP group); with patches containing the CHIR99021/FGF-loaded nanoparticles but lacking hiPSC-CMs (the NPCF-Patch group), or patches lacking both the nanoparticles and cells (the E-Patch group). Cell cycle activity was evaluated via Ki67 and Aurora B expression, bromodeoxyuridine incorporation, and phosphorylated histone 3 levels (immunofluorescence); engraftment via human cardiac troponin T or human nuclear antigen expression (immunofluorescence) and bioluminescence imaging; cardiac function via echocardiography; infarct size and wall thickness via histology; angiogenesis via isolectin B4 expression (immunofluorescence); and apoptosis via TUNEL and caspace 3 expression (immunofluorescence). RESULTS: Combined CHIR99021- and FGF1-treatment significantly increased hiPSC-CM cell cycle activity both in cultured cells (by 4- to 6-fold) and in transplanted hCMPs, and compared to treatment with NPE-hCMPs, NPCF-hCMP transplantation increased hiPSC-CM engraftment by ~4-fold and was associated with significantly better measurements of cardiac function, infarct size, wall thickness, angiogenesis, and hiPSC-CM apoptosis four weeks after MI induction. CONCLUSIONS: Nanoparticle-mediated CHIR99021 and FGF1 delivery promotes hiPSC-CM cell cycle activity and proliferation, as well as the engraftment and regenerative potency of transplanted hCMPs, in a mouse MI model.


Assuntos
Fator 1 de Crescimento de Fibroblastos/farmacologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Regeneração/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Transplante de Células-Tronco
13.
Am J Physiol Heart Circ Physiol ; 318(4): H801-H815, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057252

RESUMO

DNA damage accrued in induced pluripotent stem cell (iPSC)-derived cardiomyocytes during in vitro culture practices lessens their therapeutic potential. We determined whether DNA-damage-free iPSCs (DdF-iPSCs) can be selected using stabilization of p53, a transcription factor that promotes apoptosis in DNA-damaged cells, and differentiated them into functionally competent DdF cardiomyocytes (DdF-CMs). p53 was activated using Nutlin-3a in iPSCs to selectively kill the DNA-damaged cells, and the stable DdF cells were cultured further and differentiated into CMs. Both DdF-iPSCs and DdF-CMs were then characterized. We observed a significant decrease in the expression of reactive oxygen species and DNA damage in DdF-iPSCs compared with control (Ctrl) iPSCs. Next-generation RNA sequencing and Ingenuity Pathway Analysis revealed improved molecular, cellular, and physiological functions in DdF-iPSCs. The differentiated DdF-CMs had a compact beating frequency between 40 and 60 beats/min accompanied by increased cell surface area. Additionally, DdF-CMs were able to retain the improved molecular, cellular, and physiological functions after differentiation from iPSCs, and, interestingly, cardiac development network was prominent compared with Ctrl-CMs. Enhanced expression of various ion channel transcripts in DdF-CMs implies DdF-CMs are of ventricular CMs and mature compared with their counterparts. Our results indicated that DdF-iPSCs could be selected through p53 stabilization using a small-molecule inhibitor and differentiated into ventricular DdF-CMs with fine-tuned molecular signatures. These iPSC-derived DdF-CMs show immense clinical potential in repairing injured myocardium.NEW & NOTEWORTHY Culture-stress-induced DNA damage in stem cells lessens their performance. A robust small-molecule-based approach, by stabilizing/activating p53, to select functionally competent DNA-damage-free cells from a heterogeneous population of cells is demonstrated. This protocol can be adopted by clinics to select DNA-damage-free cells before transplanting them to the host myocardium. The intact DNA-damage-free cells exhibited with fine-tuned molecular signatures and improved cellular functions. DNA-damage-free cardiomyocytes compared with control expressed superior cardiomyocyte functional properties, including, but not limited to, enhanced ion channel signatures. These DNA-intact cells would better engraft, survive, and, importantly, improve the cardiac function of the injured myocardium.


Assuntos
Diferenciação Celular , Dano ao DNA , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Micromachines (Basel) ; 10(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470604

RESUMO

Free from the limitations posed by exogenous scaffolds or extracellular matrix-based materials, scaffold-free engineered tissues have immense clinical potential. Biomaterials may produce adverse responses, interfere with cell-cell interaction, or affect the extracellular matrix integrity of cells. The scaffold-free Kenzan method can generate complex tissues using spheroids on an array of needles but could be inefficient in terms of time, as it moves and places only a single spheroid at a time. We aimed to design and construct a novel scaffold-free bioprinter that can print an entire layer of spheroids at once, effectively reducing the printing time. The bioprinter was designed using computer-aided design software and constructed from machined, 3D printed, and commercially available parts. The printing efficiency and the operating precision were examined using Zirconia and alginate beads, which mimic spheroids. In less than a minute, the printer could efficiently pick and transfer the beads to the printing surface and assemble them onto the 4 × 4 needles. The average overlap coefficient between layers was measured and found to be 0.997. As a proof of concept using human induced pluripotent stem cell-derived spheroids, we confirmed the ability of the bioprinter to place cellular spheroids onto the needles efficiently to print an entire layer of tissue. This novel layer-by-layer, scaffold-free bioprinter is efficient and precise in operation and can be easily scaled to print large tissues.

16.
PLoS One ; 14(7): e0219442, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276558

RESUMO

Functional myocardium derived from human induced pluripotent stem cells (hiPSCs) can be impactful for cardiac disease modeling, drug testing, and the repair of injured myocardium. However, when hiPSCs are differentiated into cardiomyocytes, they do not possess characteristics of mature myocytes which limits their application in these endeavors. We hypothesized that mechanical and electrical stimuli would enhance the maturation of hiPSC-derived cardiomyocyte (hiPSC-CM) spheroids on both a structural and functional level, potentially leading to a better model for drug testing as well as cell therapy. Spheroids were generated with hiPSC-CM. For inducing mechanical stimulation, they were placed in a custom-made device with PDMS channels and exposed to cyclic, uniaxial stretch. Spheroids were electrically stimulated in the C-Pace EP from IONOptix for 7 days. Following the stimulations, the spheroids were then analyzed for cardiomyocyte maturation. Both stimulated groups of spheroids possessed enhanced transcript and protein expressions for key maturation markers, such as cTnI, MLC2v, and MLC2a, along with improved ultrastructure of the hiPSC-CMs in both groups with enhanced Z-band/Z-body formation, fibril alignment, and fiber number. Optical mapping showed that spheroids exposed to electrical stimulation were able to capture signals at increasing rates of pacing up to 4 Hz, which failed in unstimulated spheroids. Our results clearly indicate that a significantly improved myocyte maturation can be achieved by culturing iPSC-CMs as spheroids and exposing them to cyclic, uniaxial stretch and electrical stimulation.

17.
J Vis Exp ; (149)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31355804

RESUMO

A crucial factor in improving cellular therapy effectiveness for myocardial regeneration is to safely and efficiently increase the cell engraftment rate. Y-27632 is a highly potent inhibitor of Rho-associated, coiled-coil-containing protein kinase (RhoA/ROCK) and is used to prevent dissociation-induced cell apoptosis (anoikis). We demonstrate that Y-27632 pretreatment for human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs+RI) prior to implantation results in a cell engraftment rate improvement in a mouse model of acute myocardial infarction (MI). Here, we describe a complete procedure of hiPSC-CMs differentiation, purification, and cell pretreatment with Y-27632, as well as the resulting cell contraction, calcium transient measurements, and transplantation into mouse MI models. The proposed method provides a simple, safe, effective, and low-cost method which significantly increases the cell engraftment rate. This method cannot only be used in conjunction with other methods to further enhance the cell transplantation efficiency but also provides a favorable basis for the study of the mechanisms of other cardiac diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Quinases Associadas a rho/antagonistas & inibidores , Amidas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Humanos , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Subunidades Proteicas/metabolismo , Piridinas/farmacologia , Troponina/metabolismo , Verapamil/farmacologia , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...