Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 27(1): 013002, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25419724

RESUMO

In this review, we discuss the fundamental characterization of graphene oxide (GO) and its future application perspectives. Morphology is discussed through optical microscopy, fluorescence microscopy, scanning electron microscopy, and atomic force microscopy studies. Chemical, structural, and vibrational properties are discussed through x-ray photoemission spectroscopy and Raman spectroscopy studies. Two easy characterization strategies, based on the correlation between x-ray photoemission spectroscopy and contact angle/optical contrast measurements are reported. Sensing and nano-biotechnology applications are discussed with focus on practical gas sensing and optical sensing, on the one hand, and on the toxicity issue of GO, on the other hand. Synthesis and post-synthesis treatments are also discussed, these latter with emphasis on lithography.

2.
Langmuir ; 28(12): 5489-95, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22375596

RESUMO

The ability to pattern graphene over large areas with nanometer resolution is the current request for nanodevice fabrication at the industrial scale. Existing methods do not match high throughput with nanometer resolution. We propose a high-throughput resistless extreme-UV (EUV) photolithographic approach operating with sub-micrometer resolution on large area (~10 mm(2)) graphene oxide (GO) films via spatially resolved photoreduction. The efficiency of EUV photoreduction is tested with 46.9 nm coherent light produced by a table top capillary discharge plasma source. Irradiated samples are studied by X-ray photoemission spectroscopy (XPS) and micro-Raman Spectroscopy (µRS). XPS data show that 200 mJ/cm(2) EUV dose produces, onto pristine GO, a 6% increase of sp(2) carbon bonds and a 20% decrease of C-O bonds. µRS data demonstrate a photoreduction efficiency 2 orders of magnitude higher than the one reported in the literature for UV-assisted photoreduction. GO patterning is obtained modulating the EUV dose with a Lloyd's interferometer. The lithographic features consist of GO stripes with modulated reduction degree. Such modulation is investigated and demonstrated by µRS on patterns with 2 µm periodicity.

3.
Rev Sci Instrum ; 81(4): 045110, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20441371

RESUMO

A prototype low cost table-top extreme ultraviolet (EUV) laser source (1.5 ns pulse duration, lambda=46.9 nm) was successfully employed as a laboratory scale interference nanolithography (INL) tool. Interference patterns were obtained with a simple Lloyd's mirror setup. Periodic structures on Polymethylmethacrylate/Si substrates were produced on large areas (8 mm(2)) with resolutions from 400 to 22.5 nm half pitch (the smallest resolution achieved so far with table-top EUV laser sources). The mechanical vibrations affecting both the laser source and Lloyd's setup were studied to determine if and how they affect the lateral resolution of the lithographic system. The vibration dynamics was described by a statistical model based on the assumption that the instantaneous position of the vibrating mechanical parts follows a normal distribution. An algorithm was developed to simulate the process of sample irradiation under different vibrations. The comparison between simulations and experiments allowed to estimate the characteristic amplitude of vibrations that was deduced to be lower than 50 nm. The same algorithm was used to reproduce the expected pattern profiles in the lambda/4 half pitch physical resolution limit. In that limit, a nonzero pattern modulation amplitude was obtained from the simulations, comparable to the peak-to-valley height (2-3 nm) measured for the 45 nm spaced fringes, indicating that the mechanical vibrations affecting the INL tool do not represent a limit in scaling down the resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...