Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 32(34): 4043-51, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22964634

RESUMO

The complexity of gene regulation has created obstacles to defining mechanisms that establish the patterns of gene expression characteristic of the different clinical phenotypes of breast cancer. TFAP2C is a transcription factor that has a critical role in the regulation of both estrogen receptor-alpha (ERα) and c-ErbB2/HER2 (Her2). Herein, we performed chromatin immunoprecipitation and direct sequencing (ChIP-seq) for TFAP2C in four breast cancer cell lines. Comparing the genomic binding sites for TFAP2C, we identified that glutathione peroxidase (GPX1) is regulated by TFAP2C through an AP-2 regulatory region in the promoter of the GPX1 gene. Knockdown of TFAP2C, but not the related factor TFAP2A, resulted in an abrogation of GPX1 expression. Selenium-dependent GPX activity correlated with endogenous GPX1 expression and overexpression of exogenous GPX1 induced GPX activity and significantly increased resistance to tert-butyl hydroperoxide. Methylation of the CpG island encompassing the AP-2 regulatory region was identified in cell lines where TFAP2C failed to bind the GPX1 promoter and GPX1 expression was unresponsive to TFAP2C. Furthermore, in cell lines where GPX1 promoter methylation was associated with gene silencing, treatment with 5'-aza-2-deoxycytidine (5'-aza-dC) (an inhibitor of DNA methylation) allowed TFAP2C to bind to the GPX1 promoter resulting in the activation of GPX1 RNA and protein expression. Methylation of the GPX1 promoter was identified in ∼20% of primary breast cancers and a highly significant correlation between the TFAP2C and GPX1 expression was confirmed when considering only those tumors with an unmethylated promoter, whereas the related factor, TFAP2A, failed to demonstrate a correlation. The results demonstrate that TFAP2C regulates the expression of GPX1, which influences the redox state and sensitivity to oxidative stress induced by peroxides. Given the established role of GPX1 in breast cancer, the results provide an important mechanism for TFAP2C to further influence oncogenesis and progression of breast carcinoma cells.


Assuntos
Neoplasias da Mama/genética , Ilhas de CpG/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glutationa Peroxidase/genética , Fator de Transcrição AP-2/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Imunoprecipitação da Cromatina , Decitabina , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Glutationa Peroxidase/metabolismo , Humanos , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Fator de Transcrição AP-2/metabolismo , Transcrição Gênica , terc-Butil Hidroperóxido/farmacologia , Glutationa Peroxidase GPX1
2.
J Biol Chem ; 276(48): 44633-40, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11572868

RESUMO

Tat stimulates human immunodeficiency virus, type 1 (HIV-1), transcription elongation by recruitment of the human transcription elongation factor P-TEFb, consisting of CDK9 and cyclin T1, to the TAR RNA structure. It has been demonstrated further that CDK9 phosphorylation is required for high affinity binding of Tat/P-TEFb to the TAR RNA structure and that the state of P-TEFb phosphorylation may regulate Tat transactivation. We now demonstrate that CDK9 phosphorylation is uniquely regulated in the HIV-1 preinitiation and elongation complexes. The presence of TFIIH in the HIV-1 preinitiation complex inhibits CDK9 phosphorylation. As TFIIH is released from the elongation complex between +14 and +36, CDK9 phosphorylation is observed. In contrast to the activity in the "soluble" complex, phosphorylation of CDK9 is increased by the presence of Tat in the transcription complexes. Consistent with these observations, we have demonstrated that purified TFIIH directly inhibits CDK9 autophosphorylation. By using recombinant TFIIH subcomplexes, our results suggest that the XPB subunit of TFIIH is responsible for this inhibition of CDK9 phosphorylation. Interestingly, our results further suggest that the phosphorylated form of CDK9 is the active kinase for RNA polymerase II carboxyl-terminal domain phosphorylation.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , HIV-1/genética , HIV-1/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Transcrição Gênica , Western Blotting , Quinase 9 Dependente de Ciclina , Produtos do Gene tat/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Fosforilação , Fator B de Elongação Transcricional Positiva , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Polimerase II/metabolismo , Serina/metabolismo , Fator de Transcrição TFIIH , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Quinase Ativadora de Quinase Dependente de Ciclina
3.
J Biol Chem ; 276(45): 42601-9, 2001 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-11553615

RESUMO

Studying the sensitivity of transcription to the nucleotide analog 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole has led to the discovery of a number of proteins involved in the regulation of transcription elongation by RNA polymerase II. We have developed a highly purified elongation control system composed of three purified proteins added back to isolated RNA polymerase II elongation complexes. Two of the proteins, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF), act as negative transcription elongation factors by increasing the time the polymerase spent at pause sites. P-TEFb reverses the negative effect of DSIF and NELF through a mechanism dependent on its kinase activity. TFIIF is a general initiation factor that positively affects elongation by decreasing pausing. We show that TFIIF functionally competes with DSIF and NELF, and this competition is dependent on the relative concentrations of TFIIF and NELF.


Assuntos
Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , RNA Polimerase II/fisiologia , Fatores de Transcrição TFII , Fatores de Transcrição/fisiologia , Transcrição Gênica , Proteínas Nucleares/isolamento & purificação , Fator B de Elongação Transcricional Positiva , Fatores de Transcrição/isolamento & purificação , Fatores de Elongação da Transcrição
4.
J Biol Chem ; 276(34): 31793-9, 2001 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-11431468

RESUMO

Flavopiridol (L86-8275, HMR1275) is a cyclin-dependent kinase (Cdk) inhibitor in clinical trials as a cancer therapy that has been recently shown to block human immunodeficiency virus Tat transactivation and viral replication through inhibition of positive transcription elongation factor b (P-TEFb). Flavopiridol is the most potent P-TEFb inhibitor reported and the first Cdk inhibitor that is not competitive with ATP. We examined the ability of flavopiridol to inhibit P-TEFb (Cdk9/cyclin T1) phosphorylation of both RNA polymerase II and the large subunit of the 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor and found that the IC(50) determined was directly related to the concentration of the enzyme. We concluded that the flavonoid associates with P-TEFb with 1:1 stoichiometry even at concentrations of enzyme in the low nanomolar range. These results indicate that the apparent lack of competition with ATP could be caused by a very tight binding of the drug. We developed a novel immobilized P-TEFb assay and demonstrated that the drug remains bound for minutes even in the presence of high salt. Flavopiridol remained bound in the presence of a 1000-fold excess of the commonly used inhibitor DRB, suggesting that the immobilized P-TEFb could be used in a simple screening assay that would allow the discovery or characterization of compounds with binding properties similar to flavopiridol. Finally, we compared the ability of flavopiridol and DRB to inhibit transcription in vivo using nuclear run-on assays and concluded that P-TEFb is required for transcription of most RNA polymerase II molecules in vivo.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Piperidinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Polimerase II/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Drosophila , Flavonoides/metabolismo , Piperidinas/metabolismo , Fator B de Elongação Transcricional Positiva , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo
5.
Nucleic Acids Res ; 29(3): 767-73, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11160900

RESUMO

The C-terminal domain (CTD) of the large subunit of RNA polymerase II plays a role in transcription and RNA processing. Yeast ESS1, a peptidyl-prolyl cis/trans isomerase, is involved in RNA processing and can associate with the CTD. Using several types of assays we could not find any evidence of an effect of Pin1, the human homolog of ESS1, on transcription by RNA polymerase II in vitro or on the expression of a reporter gene in vivo. However, an inhibitor of Pin1, 5-hydroxy-1,4-naphthoquinone (juglone), blocked transcription by RNA polymerase II. Unlike N-ethylmaleimide, which inhibited all phases of transcription by RNA polymerase II, juglone disrupted the formation of functional preinitiation complexes by modifying sulfhydryl groups but did not have any significant effect on either initiation or elongation. Both RNA polymerases I and III, but not T7 RNA polymerase, were inhibited by juglone. The primary target of juglone has not been unambiguously identified, although a site on the polymerase itself is suggested by inhibition of RNA polymerase II during factor-independent transcription of single-stranded DNA. Because of its unique inhibitory properties juglone should prove useful in studying transcription in vitro.


Assuntos
Inibidores Enzimáticos/farmacologia , Naftoquinonas/farmacologia , Peptidilprolil Isomerase/antagonistas & inibidores , DNA Recombinante , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Plasmídeos/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Compostos de Sulfidrila/química , Transcrição Gênica/efeitos dos fármacos
6.
Virology ; 274(2): 356-66, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10964778

RESUMO

Equine infectious anemia virus (EIAV) activates transcription via a Tat protein, a TAR element, and the equine elongation factor positive transcription elongation factor b (P-TEFb). In human cells, EIAV Tat (eTat) can inhibit the ability of human immunodeficiency virus type 1 (HIV-1) Tat (hTat) to activate transcription from the HIV-1 long terminal repeat, demonstrating that EIAV Tat can interact nonproductively with human P-TEFb. To study the mechanism of EIAV Tat and HIV-1 Tat activation, we developed an in vitro elongation assay that recapitulates EIAV Tat-mediated inhibition of HIV-1 Tat trans-activation. We found that eTat specifically inhibits activation of elongation by HIV-1 Tat while having no effect on basal transcription elongation. The competitive inhibition of hTat activation was reversed by an activity present in HeLa cell nuclear extracts, most likely a form of P-TEFb. Recombinant P-TEFb (cyclin T1 and CDK9) overcame the inhibition of transcription by eTat but in a nonspecific manner. EIAV Tat affinity chromatography was used to purify the activity present in nuclear extract that was capable of reversing eTat inhibition. We characterized the protein components of this activity, which include cyclin T1, CDK9, Tat-SF1, and at least three unidentified proteins. These data suggest that additional factors are involved in the mechanism of Tat activation.


Assuntos
Regulação Viral da Expressão Gênica , Produtos do Gene tat/antagonistas & inibidores , Produtos do Gene tat/metabolismo , HIV-1/genética , Vírus da Anemia Infecciosa Equina , Proteínas Serina-Treonina Quinases/metabolismo , Ligação Competitiva , Extratos Celulares , Sistema Livre de Células , Cromatografia de Afinidade , Ciclina T , Quinase 9 Dependente de Ciclina , Quinases Ciclina-Dependentes/isolamento & purificação , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/isolamento & purificação , Ciclinas/metabolismo , Produtos do Gene tat/isolamento & purificação , Repetição Terminal Longa de HIV/genética , Células HeLa , Temperatura Alta , Humanos , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Fator B de Elongação Transcricional Positiva , Regiões Promotoras Genéticas/genética , Ligação Proteica , Desnaturação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Moldes Genéticos , Fatores de Tempo , Transativadores/isolamento & purificação , Transativadores/metabolismo , Transcrição Gênica/genética , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana
7.
J Biol Chem ; 275(37): 28345-8, 2000 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10906320

RESUMO

Flavopiridol (L86-8275, HMR1275) is a cyclin-dependent kinase (Cdk) inhibitor that is in clinical trials as a cancer treatment because of its antiproliferative properties. We found that the flavonoid potently inhibited transcription by RNA polymerase II in vitro by blocking the transition into productive elongation, a step controlled by P-TEFb. The ability of P-TEFb to phosphorylate the carboxyl-terminal domain of the large subunit of RNA polymerase II was inhibited by flavopiridol with a K(i) of 3 nm. Interestingly, the drug was not competitive with ATP. P-TEFb composed of Cdk9 and cyclin T1 is a required cellular cofactor for the human immunodeficiency virus (HIV-1) transactivator, Tat. Consistent with its ability to inhibit P-TEFb, flavopiridol blocked Tat transactivation of the viral promoter in vitro. Furthermore, flavopiridol blocked HIV-1 replication in both single-round and viral spread assays with an IC(50) of less than 10 nm.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , HIV-1/efeitos dos fármacos , Piperidinas/farmacologia , Replicação Viral/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Ciclina T , Quinase 9 Dependente de Ciclina , HIV-1/genética , HIV-1/fisiologia , Humanos , Regiões Promotoras Genéticas , Transcrição Gênica/efeitos dos fármacos
8.
Mol Cell Biol ; 20(14): 5077-86, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10866664

RESUMO

Tat stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional elongation by recruitment of carboxyl-terminal domain (CTD) kinases to the HIV-1 promoter. Using an immobilized DNA template assay, we have analyzed the effect of Tat on kinase activity during the initiation and elongation phases of HIV-1 transcription. Our results demonstrate that cyclin-dependent kinase 7 (CDK7) (TFIIH) and CDK9 (P-TEFb) both associate with the HIV-1 preinitiation complex. Hyperphosphorylation of the RNA polymerase II (RNAP II) CTD in the HIV-1 preinitiation complex, in the absence of Tat, takes place at CTD serine 2 and serine 5. Analysis of preinitiation complexes formed in immunodepleted extracts suggests that CDK9 phosphorylates serine 2, while CDK7 phosphorylates serine 5. Remarkably, in the presence of Tat, the substrate specificity of CDK9 is altered, such that the kinase phosphorylates both serine 2 and serine 5. Tat-induced CTD phosphorylation by CDK9 is strongly inhibited by low concentrations of 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole, an inhibitor of transcription elongation by RNAP II. Analysis of stalled transcription elongation complexes demonstrates that CDK7 is released from the transcription complex between positions +14 and +36, prior to the synthesis of transactivation response (TAR) RNA. In contrast, CDK9 stays associated with the complex through +79. Analysis of CTD phosphorylation indicates a biphasic modification pattern, one in the preinitiation complex and the other between +36 and +79. The second phase of CTD phosphorylation is Tat-dependent and TAR-dependent. These studies suggest that the ability of Tat to increase transcriptional elongation may be due to its ability to modify the substrate specificity of the CDK9 complex.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Produtos do Gene tat/metabolismo , HIV-1/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Biotina/metabolismo , Quinase 9 Dependente de Ciclina , Quinases Ciclina-Dependentes/efeitos dos fármacos , Diclororribofuranosilbenzimidazol/farmacologia , Inibidores Enzimáticos/farmacologia , Repetição Terminal Longa de HIV , Humanos , Fosforilação/efeitos dos fármacos , Fator B de Elongação Transcricional Positiva , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Especificidade por Substrato , Moldes Genéticos , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Genes Dev ; 14(7): 792-803, 2000 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10766736

RESUMO

P-TEFb, a heterodimer of the kinase Cdk9 and cyclin T, was isolated as a factor that stimulates formation of productive transcription elongation complexes in vitro. Here, we show that P-TEFb is located at >200 distinct sites on Drosophila polytene chromosomes. Upon heat shock, P-TEFb, like the regulatory factor HSF, is rapidly recruited to heat shock loci, and this recruitment is blocked in an HSF mutant. Yet, HSF binding to DNA is not sufficient to recruit P-TEFb in vivo, and HSF and P-TEFb immunostainings within a heat shock locus are not coincident. Insight to the function of P-TEFb is offered by experiments showing that the direct recruitment of a Gal4-binding domain P-TEFb hybrid to an hsp70 promoter in Drosophila cells is sufficient to activate transcription in the absence of heat shock. Analyses of point mutants show this P-TEFb stimulation is dependent on Cdk9 kinase activity and on Cdk9's interaction with cyclin T. These results, coupled with the frequent colocalization of P-TEFb and the hypophosphorylated form of RNA polymerase II (Pol II) found at promoter-pause sites, support a model in which P-TEFb acts to stimulate promoter-paused Pol II to enter into productive elongation.


Assuntos
Drosophila melanogaster/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Mapeamento Cromossômico , Ciclina T , Quinase 9 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Dimerização , Proteínas de Drosophila , Regulação da Expressão Gênica , Temperatura Alta , Fosforilação , Fator B de Elongação Transcricional Positiva , Proteínas Recombinantes/metabolismo , Glândulas Salivares/fisiologia , Transcrição Gênica , Transfecção
11.
J Biol Chem ; 274(49): 34527-30, 1999 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-10574912

RESUMO

Important progress in the understanding of elongation control by RNA polymerase II (RNAPII) has come from the recent identification of the positive transcription elongation factor b (P-TEFb) and the demonstration that this factor is a protein kinase that phosphorylates the carboxyl-terminal domain (CTD) of the RNAPII largest subunit. The P-TEFb complex isolated from mammalian cells contains a catalytic subunit (CDK9), a cyclin subunit (cyclin T1 or cyclin T2), and additional, yet unidentified, polypeptides of unknown function. To identify additional factors involved in P-TEFb function we performed a yeast two-hybrid screen using CDK9 as bait and found that cyclin K interacts with CDK9 in vivo. Biochemical analyses indicate that cyclin K functions as a regulatory subunit of CDK9. The CDK9-cyclin K complex phosphorylated the CTD of RNAPII and functionally substituted for P-TEFb comprised of CDK9 and cyclin T in in vitro transcription reactions.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , Ciclinas/fisiologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Cromatografia em Gel , Quinase 9 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica , Células HeLa , Humanos , Cinética , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
12.
J Biol Chem ; 274(35): 24779-86, 1999 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-10455150

RESUMO

RNA polymerase II stalled at a lesion in the transcribed strand is thought to constitute a signal for transcription-coupled repair. Transcription factors that act on RNA polymerase in elongation mode potentially influence this mode of repair. Previously, it was shown that transcription elongation factors TFIIS and Cockayne's syndrome complementation group B protein did not disrupt the ternary complex of RNA polymerase II stalled at a thymine cyclobutane dimer, nor did they enable RNA polymerase II to bypass the dimer. Here we investigated the effect of the transcription factor 2 on RNA polymerase II and RNA polymerase I stalled at thymine dimers. Transcription factor 2 is known to release transcripts from RNA polymerase II early elongation complex generated by pulse-transcription. We found that factor 2 (which is also called release factor) disrupts the ternary complex of RNA polymerase II at a thymine dimer and surprisingly exerts the same effect on RNA polymerase I. These findings show that in mammalian cells a RNA polymerase I or RNA polymerase II transcript truncated by a lesion in the template strand may be discarded unless repair is accomplished rapidly by a mechanism that does not displace stalled RNA polymerases.


Assuntos
Dímeros de Pirimidina/genética , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Fatores de Transcrição/metabolismo , Pegada de DNA , DNA Helicases/metabolismo , Reparo do DNA/genética , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I , Humanos , Oligodesoxirribonucleotídeos , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Recombinantes/genética , Moldes Genéticos
13.
Virology ; 255(1): 182-9, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10049833

RESUMO

The transcriptional transactivator (Tat) from the human immunodeficiency virus (HIV) does not function efficiently in Chinese hamster ovary (CHO) cells. Only somatic cell hybrids between CHO and human cells and CHO cells containing human chromosome 12 (CHO12) support high levels of Tat transactivation. This restriction was mapped to interactions between Tat and TAR. Recently, human cyclin T1 was found to increase the binding of Tat to TAR and levels of Tat transactivation in rodent cells. By combining individually with CDK9, cyclin T1 or related cyclins T2a and T2b form distinct positive transcription elongation factor b (P-TEFb) complexes. In this report, we found that of these three cyclins, only cyclin T1 is encoded on human chromosome 12 and is responsible for its effects in CHO cells. Moreover, only human cyclin T1, not mouse cyclin T1 or human cyclins T2a or T2b, supported interactions between Tat and TAR in vitro. Finally, after introducing appropriate receptors and human cyclin T1 into CHO cells, they became permissive for infection by and replication of HIV.


Assuntos
Ciclinas/metabolismo , Produtos do Gene tat/metabolismo , Repetição Terminal Longa de HIV , HIV-1/fisiologia , Replicação Viral , Animais , Antígenos CD4/genética , Antígenos CD4/metabolismo , Células CHO , Linhagem Celular Transformada , Cromossomos Humanos Par 12 , Cricetinae , Ciclina T , Ciclinas/genética , Regulação Viral da Expressão Gênica , Produtos do Gene tat/genética , HIV-1/genética , Células HeLa , Humanos , Células Jurkat , Camundongos , Provírus/genética , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Quimiocinas , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana
14.
Curr Genet ; 35(1): 23-9, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10022945

RESUMO

In the amoeboid protozoon Acanthamoeba castellanii 13 of the 16 mtDNA-encoded tRNA sequences have mis-matches at one or more of the first three positions in the acceptor stem. A previous study had indicated that these mis-matches are corrected by a form of RNA editing. In the present study, the pattern of editing was further investigated by sequence analysis of both halves of the acceptor stem of 11 mtDNA-encoded tRNAs. The results confirm all of the remaining editing sites predicted on the basis of the secondary structure modelling of A. castellanii mitochondrial tRNAs, and identify two unexpected edits. We also investigated the expression and editing of transcripts of an unusual trnX gene specifying an eight-nucleotide anticodon loop sequence. Although no mature 3'-CCAOH-containing tRNAX products were detected, editing was observed in some circularized tRNAX clones. The implications of these results with respect to the mechanism of editing and the evolutionary origin of this process are discussed.


Assuntos
Acanthamoeba/genética , Edição de RNA/genética , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , RNA/genética , Animais , Sequência de Bases , Primers do DNA/genética , DNA Mitocondrial/genética , DNA de Protozoário/genética , Evolução Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA Mitocondrial , RNA de Protozoário/genética , RNA de Transferência/química , Análise de Sequência de RNA
15.
RNA ; 5(2): 302-17, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10024181

RESUMO

In Acanthamoeba castellanii, most of the mtDNA-encoded tRNAs are edited by a process that replaces one or more of the first three nucleotides at their 5' ends. As a result, base pairing potential is restored at acceptor stem positions (1:72, 2:71, and/or 3:70, in standard tRNA nomenclature) that are mismatched according to the corresponding tRNA gene sequence. Here we describe a novel nucleotide incorporation activity, partially purified from A. castellanii mitochondria, that has properties implicating it in mitochondrial tRNA editing in this organism. This activity is able to replace nucleotides at the first three positions of a tRNA (positions 1, 2, and 3), matching the newly incorporated residues through canonical base pairing to the respective partner nucleotide in the 3' half of the acceptor stem. Labeling experiments with natural (Escherichia coli tRNATyr) and synthetic (run-off transcripts corresponding to A. castellanii mitochondrial tRNALeu1) substrates suggest that the nucleotide incorporation activity consists of at least two components, a 5' exonuclease or endonuclease and a template-directed 3'-to-5' nucleotidyltransferase. The nucleotidyltransferase component displays an ATP requirement and generates 5' pppN... termini in vitro. The development of an accurate and efficient in vitro system opens the way for detailed studies of the biochemical properties of this novel activity and its relationship to mitochondrial tRNA editing in A. castellanii. In addition, the system will allow delineation of the structural features in a tRNA that identify it as a substrate for the labeling activity.


Assuntos
Acanthamoeba/metabolismo , Nucleotídeos/metabolismo , Edição de RNA/genética , RNA de Transferência/metabolismo , RNA/genética , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Endonucleases/metabolismo , Escherichia coli/genética , Exonucleases/metabolismo , Dados de Sequência Molecular , Nucleotidiltransferases/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mitocondrial , RNA de Transferência de Leucina/genética , RNA de Transferência de Tirosina/genética , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Transcrição Gênica/genética
16.
J Virol ; 73(2): 1320-30, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9882337

RESUMO

Varicella-zoster virus (VZV) glycoprotein gI is a type 1 transmembrane glycoprotein which is one component of the heterodimeric gE:gI Fc receptor complex. Like VZV gE, VZV gI was phosphorylated in both VZV-infected cells and gI-transfected cells. Preliminary studies demonstrated that a serine 343-proline 344 sequence located within the gI cytoplasmic tail was the most likely phosphorylation site. To determine which protein kinase catalyzed the gI phosphorylation event, we constructed a fusion protein, consisting of glutathione-S-transferase (GST) and the gI cytoplasmic tail, called GST-gI-wt. When this fusion protein was used as a substrate for gI phosphorylation in vitro, the results demonstrated that GST-gI-wt fusion protein was phosphorylated by a representative cyclin-dependent kinase (CDK) called P-TEFb, a homologue of CDK1 (cdc2). When serine 343 within the serine-proline phosphorylation site was replaced with an alanine residue, the level of phosphorylation of the gI fusion protein was greatly reduced. Subsequent experiments with individually immunoprecipitated mammalian CDKs revealed that the VZV gI fusion protein was phosphorylated best by CDK1, to a lesser degree by CDK2, and not at all by CDK6. Transient-transfection assays carried out in the presence of the specific CDK inhibitor roscovitine strongly supported the prior results by demonstrating a marked decrease in gI phosphorylation while gI protein expression was unaffected. Finally, the possibility that VZV gI contained a CDK phosphorylation site in its endodomain was of further interest because its partner, gE, contains a casein kinase II phosphorylation site in its endodomain; prior studies have established that CDK1 can phosphorylate casein kinase II.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Herpesvirus Humano 3/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Fc/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular Transformada , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Drosophila/enzimologia , Proteínas de Drosophila , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Células Jurkat , Dados de Sequência Molecular , Fosforilação , Fator B de Elongação Transcricional Positiva , Prolina/metabolismo , Purinas/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Roscovitina , Serina/metabolismo , Treonina , Transfecção , Células Tumorais Cultivadas , Proteínas do Envelope Viral/genética
17.
J Biol Chem ; 273(40): 25541-4, 1998 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-9748214

RESUMO

We obtained protein sequence information from Drosophila factor 2, an ATP-dependent RNA polymerase II transcription termination factor, and discovered that it was identical to a SWI2/SNF2 family member called lodestar. Portions of putative human and Caenorhabditis elegans homologues were found in the sequence data bases and a complete cDNA for the human factor was generated using polymerase chain reaction techniques. Recombinant human factor 2 was produced in a baculovirus expression system, purified, and characterized. Similar to the authentic Drosophila factor, the human factor displayed a strong double-stranded DNA-dependent ATPase activity that was inhibited by single-stranded DNA and exhibited RNA polymerase II termination activity. Both factors were able to work on elongation complexes from either species. We discuss the mechanism of termination by factor 2 and the implications for the role of factor 2 in cellular activities.


Assuntos
DNA Helicases , Proteínas Nucleares , RNA Polimerase II/genética , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA/química , Bases de Dados Factuais , Drosophila/metabolismo , Humanos , Proteínas Recombinantes/química , Análise de Sequência de DNA
18.
J Virol ; 72(9): 7154-9, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9696809

RESUMO

By binding to the transactivation response element (TAR) RNA, the transcriptional transactivator (Tat) from the human immunodeficiency virus increases rates of elongation rather than initiation of viral transcription. Two cyclin-dependent serine/threonine kinases, CDK7 and CDK9, which phosphorylate the C-terminal domain of RNA polymerase II, have been implicated in Tat transactivation in vivo and in vitro. In this report, we demonstrate that CDK9, which is the kinase component of the positive transcription elongation factor b (P-TEFb) complex, can activate viral transcription when tethered to the heterologous Rev response element RNA via the regulator of expression of virion proteins (Rev). The kinase activity of CDK9 and cyclin T1 is essential for these effects. Moreover, P-TEFb binds to TAR only in the presence of Tat. We conclude that Tat-P-TEFb complexes bind to TAR, where CDK9 modifies RNA polymerase II for the efficient copying of the viral genome.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Produtos do Gene tat/metabolismo , HIV-1/genética , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ativação Transcricional , Linhagem Celular Transformada , Ciclina T , Quinases Ciclina-Dependentes/genética , Produtos do Gene rev/genética , Repetição Terminal Longa de HIV , Células HeLa , Humanos , Fator B de Elongação Transcricional Positiva , Transcrição Gênica , Produtos do Gene rev do Vírus da Imunodeficiência Humana , Produtos do Gene tat do Vírus da Imunodeficiência Humana
19.
J Biol Chem ; 273(22): 13855-60, 1998 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-9593731

RESUMO

P-TEFb is required for the transition from abortive elongation into productive elongation and is capable of phosphorylating the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. We cloned a cDNA encoding the large subunit of Drosophila P-TEFb and found the predicted protein contained a cyclin motif. We now name the large subunit cyclin T and the previously cloned small subunit (Zhu, Y. R., Peery, T., Peng, J. M., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997) Genes Dev. 11, 2622-2632) cyclin-dependent kinase 9 (CDK9). Recombinant P-TEFb produced in baculovirus-transfected Sf9 cells exhibited 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-sensitive kinase activity similar to native P-TEFb. Kc cell nuclear extract depleted of P-TEFb failed to generate long DRB-sensitive transcripts, but this activity was restored upon addition of either native or recombinant P-TEFb. Like other CDKs, CDK9 is essentially inactive in the absence of its cyclin partner. P-TEFb containing a CDK9 mutation that knocked out the kinase activity did not function in transcription. Deletion of the carboxyl-terminal domain of cyclin T in P-TEFb reduced both the kinase and transcription activity to about 10%. The CDK-activating kinase in TFIIH was unable to activate the CTD kinase activity of P-TEFb.


Assuntos
Ciclinas/metabolismo , Proteínas de Drosophila , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Fatores de Transcrição TFII , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/química , Primers do DNA , Dados de Sequência Molecular , Fosforilação , Fator B de Elongação Transcricional Positiva , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
20.
Genes Dev ; 12(5): 755-62, 1998 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-9499409

RESUMO

The transition from abortive into productive elongation is proposed to be controlled by a positive transcription elongation factor b (P-TEFb) through phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. Drosophila P-TEFb was identified recently as a cyclin-dependent kinase (CDK9) paired with a cyclin subunit (cyclin T). We demonstrate here the cloning of multiple cyclin subunits of human P-TEFb (T1 and T2). Cyclin T2 has two forms (T2a and T2b) because of alternative splicing. Both cyclin T1 and T2 are ubiquitously expressed. Immunoprecipitation and immunodepletion experiments carried out on HeLa nuclear extract (HNE) indicated that cyclin T1 and T2 were associated with CDK9 in a mutually exclusive manner and that almost all CDK9 was associated with either cyclin T1 or T2. Recombinant CDK9/cyclin T1, CDK9/cyclin T2a, and CDK9/cyclin T2b produced in Sf9 cells possessed DRB-sensitive kinase activity and functioned in transcription elongation in vitro. Either cyclin T1 or T2 was required to activate CDK9, and the truncation of the carboxyl terminus of the cyclin reduced, but did not eliminate, P-TEFb activity. Cotransfection experiments indicated that all three CDK9/cyclin combinations dramatically activated the CMV promoter.


Assuntos
Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Ciclina T , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Citomegalovirus/genética , Proteínas de Drosophila , Células HeLa , Humanos , Dados de Sequência Molecular , Fator B de Elongação Transcricional Positiva , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...