Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cortex ; 171: 113-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992508

RESUMO

The processing of numerals as visual objects is supported by an "Inferior Temporal Numeral Area" (ITNA) in the bilateral inferior temporal gyri (ITG). Extant findings suggest some degree of hemispheric asymmetry in how the bilateral ITNAs process numerals. Pollack and Price (2019) reported such a hemispheric asymmetry by which a region in the left ITG was sensitive to digits during a visual search for a digit among letters, and a homologous region in the right ITG that showed greater digit sensitivity in individuals with higher calculation skills. However, the ITG regions were localized with separate analyses without directly contrasting their digit sensitivities and relation to calculation skills. So, the extent of and reasons for these functional asymmetries remain unclear. Here we probe whether the functional and representational properties of the ITNAs are asymmetric by applying both univariate and multivariate region-of-interest analyses to Pollack and Price's (2019) data. Contrary to the implications of the original findings, digit sensitivity did not differ between ITNAs, and digit sensitivity in both left and right ITNAs was associated with calculation skills. Representational similarity analyses revealed that the overall representational geometries of digits in the ITNAs were also correlated, albeit weakly, but the representational contents of the ITNAs were largely inconclusive. Nonetheless, we found a right lateralization in engagement in alphanumeric categorization, and that the right ITNA showed greater discriminability between digits and letters. Greater right lateralization of digit sensitivity and digit discriminability in the left ITNA were also related to higher calculation skills. Our findings thus suggest that the ITNAs may not be functionally identical and should be directly contrasted in future work. Our study also highlights the importance of within-individual comparisons for understanding hemispheric asymmetries, and analyses of individual differences and multivariate features to uncover effects that would otherwise be obscured by averages.


Assuntos
Lateralidade Funcional , Imageamento por Ressonância Magnética , Humanos , Lobo Temporal , Análise Multivariada , Individualidade , Mapeamento Encefálico
2.
Cereb Cortex ; 33(11): 6959-6989, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36758954

RESUMO

The purpose of this study is to identify consistencies across functional neuroimaging studies regarding common and unique brain regions/networks for individuals with reading difficulties (RD) and math difficulties (MD) compared to typically developing (TD) individuals. A systematic search of the literature, utilizing multiple databases, yielded 116 functional magnetic resonance imaging and positron emission tomography studies that met the criteria. Coordinates that directly compared TD with either RD or MD were entered into GingerALE (Brainmap.org). An activation likelihood estimate (ALE) meta-analysis was conducted to examine common and unique brain regions for RD and MD. Overall, more studies examined RD (n = 96) than MD (n = 20). Across studies, overactivation for reading and math occurred in the right insula and inferior frontal gyrus for atypically developing (AD) > TD comparisons, albeit in slightly different areas of these regions; however, inherent threshold variability across imaging studies could diminish overlying regions. For TD > AD comparisons, there were no similar or overlapping brain regions. Results indicate there were domain-specific differences for RD and MD; however, there were some similarities in the ancillary recruitment of executive functioning skills. Theoretical and practical implications for researchers and educators are discussed.


Assuntos
Dislexia , Leitura , Humanos , Dislexia/patologia , Funções Verossimilhança , Encéfalo , Cognição , Imageamento por Ressonância Magnética
3.
Cereb Cortex ; 33(10): 6152-6170, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36587366

RESUMO

A growing body of evidence suggests that in adults, there is a spatially consistent "inferior temporal numeral area" (ITNA) in the occipitotemporal cortex that appears to preferentially process Arabic digits relative to non-numerical symbols and objects. However, very little is known about why the ITNA is spatially segregated from regions that process other orthographic stimuli such as letters, and why it is spatially consistent across individuals. In the present study, we used diffusion-weighted imaging and functional magnetic resonance imaging to contrast structural and functional connectivity between left and right hemisphere ITNAs and a left hemisphere letter-preferring region. We found that the left ITNA had stronger structural and functional connectivity than the letter region to inferior parietal regions involved in numerical magnitude representation and arithmetic. Between hemispheres, the left ITNA showed stronger structural connectivity with the left inferior frontal gyrus (Broca's area), while the right ITNA showed stronger structural connectivity to the ipsilateral inferior parietal cortex and stronger functional coupling with the bilateral IPS. Based on their relative connectivity, our results suggest that the left ITNA may be more readily involved in mapping digits to verbal number representations, while the right ITNA may support the mapping of digits to quantity representations.


Assuntos
Mapeamento Encefálico , Lobo Temporal , Adulto , Humanos , Vias Neurais/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Córtex Cerebral , Lobo Parietal/diagnóstico por imagem , Imageamento por Ressonância Magnética
4.
Child Abuse Negl ; 142(Pt 1): 105561, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35221137

RESUMO

BACKGROUND: Childhood adversity is associated with poorer health and lower academic achievement later in life. Poor math skills in particular place individuals at higher risk for physical and mental illness, unemployment, and incarceration, suggesting math achievement may be one explanatory mechanism linking adversity to later functioning. While it is well documented that children's adversity is associated with lower academic achievement, it is also plausible that adversity mothers experience across their lifetime may affect the child's academic achievement. OBJECTIVE: Determine whether adversity children directly experience and adversity mothers experience in their own childhood and/or adulthood is related to children's kindergarten math skills. PARTICIPANTS AND METHODS: 91 Mothers completed the Assessment of Parent and Child Adversity questionnaire, and their kindergartners completed the KeyMath-3 Diagnostic Assessment. RESULTS: Maternal childhood adversity, but not adulthood adversity, was negatively related to children's numeration (ß = -0.27, 95% CI [-0.48, -0.05], p = .015) and addition/subtraction abilities in kindergarten (ß = -0.25, 95% CI [-0.46, -0.04], p = .023). Maternal childhood maltreatment and other adversity were together related to their child's numeration only (R2 = 0.08, 95% CI [0.02, 0.23], p = .026). Prevalence of children's direct adversity was low and not related to their kindergarten math skills. CONCLUSIONS: Our findings suggest that adversity impacts children's math skills as early as kindergarten via the intergenerational transmission of maternal adversity. Mothers that experienced early-life adversity and their children may benefit from early intervention to level the playing field at school entry.


Assuntos
Experiências Adversas da Infância , Feminino , Criança , Humanos , Estudos Longitudinais , Instituições Acadêmicas , Escolaridade , Mães
5.
J Neurosci ; 43(1): 142-154, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36384679

RESUMO

Language comprehension requires the rapid retrieval and integration of contextually appropriate concepts ("semantic cognition"). Current neurobiological models of semantic cognition are limited by the spatial and temporal restrictions of single-modality neuroimaging and lesion approaches. This is a major impediment given the rapid sequence of processing steps that have to be coordinated to accurately comprehend language. Through the use of fused functional magnetic resonance imaging and electroencephalography analysis in humans (n = 26 adults; 15 females), we elucidate a temporally and spatially specific neurobiological model for real-time semantic cognition. We find that semantic cognition in the context of language comprehension is supported by trade-offs between widespread neural networks over the course of milliseconds. Incorporation of spatial and temporal characteristics, as well as behavioral measures, provide convergent evidence for the following progression: a hippocampal/anterior temporal phonological semantic retrieval network (peaking at ∼300 ms after the sentence final word); a frontotemporal thematic semantic network (∼400 ms); a hippocampal memory update network (∼500 ms); an inferior frontal semantic syntactic reappraisal network (∼600 ms); and nodes of the default mode network associated with conceptual coherence (∼750 ms). Additionally, in typical adults, mediatory relationships among these networks are significantly predictive of language comprehension ability. These findings provide a conceptual and methodological framework for the examination of speech and language disorders, with additional implications for the characterization of cognitive processes and clinical populations in other cognitive domains.SIGNIFICANCE STATEMENT The present study identifies a real-time neurobiological model of the meaning processes required during language comprehension (i.e., "semantic cognition"). Using a novel application of fused magnetic resonance imaging and electroencephalography in humans, we found that semantic cognition during language comprehension is supported by a rapid progression of widespread neural networks related to meaning, meaning integration, memory, reappraisal, and conceptual cohesion. Relationships among these systems were predictive of individuals' language comprehension efficiency. Our findings are the first to use fused neuroimaging analysis to elucidate language processes. In so doing, this study provides a new conceptual and methodological framework in which to characterize language processes and guide the treatment of speech and language deficits/disorders.


Assuntos
Encéfalo , Semântica , Adulto , Feminino , Humanos , Encéfalo/diagnóstico por imagem , Cognição , Idioma , Compreensão , Imageamento por Ressonância Magnética , Mapeamento Encefálico
6.
Cereb Cortex ; 32(19): 4204-4214, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34974615

RESUMO

A critical goal of cognitive neuroscience is to predict behavior from neural structure and function, thereby providing crucial insights into who might benefit from clinical and/or educational interventions. Across development, the strength of functional connectivity among a distributed set of brain regions is associated with children's math skills. Therefore, in the present study we use connectome-based predictive modeling to investigate whether functional connectivity during numerical processing and at rest "predicts" children's math skills (N = 31, Mage = 9.21 years, 14 Female). Overall, we found that functional connectivity during symbolic number comparison and rest, but not during nonsymbolic number comparison, predicts children's math skills. Each task revealed a largely distinct set of predictive connections distributed across canonical brain networks and major brain lobes. Most of these predictive connections were negatively correlated with children's math skills so that weaker connectivity predicted better math skills. Notably, these predictive connections were largely nonoverlapping across task states, suggesting children's math abilities may depend on state-dependent patterns of network segregation and/or regional specialization. Furthermore, the current predictive modeling approach moves beyond brain-behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.


Assuntos
Encéfalo , Conectoma , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Matemática , Resolução de Problemas
7.
Magn Reson Med ; 86(6): 3304-3320, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34270123

RESUMO

PURPOSE: Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge. METHODS: To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy, mean diffusivity, and principal eigenvector; region-wise CSF volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, fractional anisotropy, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. RESULTS: We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. CONCLUSIONS: This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered before inference of group differences on subjects.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Criança , Imagem de Difusão por Ressonância Magnética , Humanos , Neuritos
8.
Magn Reson Med ; 86(1): 456-470, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33533094

RESUMO

PURPOSE: Diffusion weighted MRI imaging (DWI) is often subject to low signal-to-noise ratios (SNRs) and artifacts. Recent work has produced software tools that can correct individual problems, but these tools have not been combined with each other and with quality assurance (QA). A single integrated pipeline is proposed to perform DWI preprocessing with a spectrum of tools and produce an intuitive QA document. METHODS: The proposed pipeline, built around the FSL, MRTrix3, and ANTs software packages, performs DWI denoising; inter-scan intensity normalization; susceptibility-, eddy current-, and motion-induced artifact correction; and slice-wise signal drop-out imputation. To perform QA on the raw and preprocessed data and each preprocessing operation, the pipeline documents qualitative visualizations, quantitative plots, gradient verifications, and tensor goodness-of-fit and fractional anisotropy analyses. RESULTS: Raw DWI data were preprocessed and quality checked with the proposed pipeline and demonstrated improved SNRs; physiologic intensity ratios; corrected susceptibility-, eddy current-, and motion-induced artifacts; imputed signal-lost slices; and improved tensor fits. The pipeline identified incorrect gradient configurations and file-type conversion errors and was shown to be effective on externally available datasets. CONCLUSIONS: The proposed pipeline is a single integrated pipeline that combines established diffusion preprocessing tools from major MRI-focused software packages with intuitive QA.


Assuntos
Artefatos , Imagem de Difusão por Ressonância Magnética , Anisotropia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Movimento (Física)
9.
Psychol Res ; 85(3): 1248-1271, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060699

RESUMO

Numerosity estimation performance (e.g., how accurate, consistent, or proportionally spaced (linear) numerosity-numeral mappings are) has previously been associated with math competence. However, the specific mechanisms that underlie such a relation is unknown. One possible mechanism is the mapping process between numerical sets and symbolic numbers (e.g., Arabic numerals). The current study examined two hypothesized mechanisms of numerosity-numeral mappings (item-based "associative" and holistic "structural" mapping) and their roles in the estimation-and-math relation. Specifically, mappings for small numbers (e.g., 1-10) are thought to be associative and resistant to calibration (e.g., feedback on accuracy of estimates), whereas holistic "structural" mapping for larger numbers (e.g., beyond 10) may be supported by flexibly aligning a numeral "response grid" (akin to a ruler) to an analog "mental number line" upon calibration. In 57 adults, we used pre- and post-calibration estimates to measure the range of continuous associative mappings among small numbers (e.g., a base range of associative mappings from 1 to 10), and obtained measures of math competence and delayed multiple-choice strategy reports. Consistent with previous research, uncalibrated estimation performance correlated with calculation competence, controlling for reading fluency and working memory. However, having a higher base range of associative mappings was not related to estimation performance or any math competence measures. Critically, discontinuity in calibration effects was typical at the individual level, which calls into question the nature of "holistic structural mapping". A parsimonious explanation to integrate previous and current findings is that estimation performance is likely optimized by dynamically constructing numerosity-numeral mappings through the use of multiple strategies from trial to trial.


Assuntos
Sucesso Acadêmico , Conceitos Matemáticos , Memória de Curto Prazo/fisiologia , Competência Mental/psicologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Estudantes , Universidades , Adulto Jovem
10.
Netw Neurosci ; 4(3): 714-745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885123

RESUMO

Studies of brain activity during number processing suggest symbolic and nonsymbolic numerical stimuli (e.g., Arabic digits and dot arrays) engage both shared and distinct neural mechanisms. However, the extent to which number format influences large-scale functional network organization is unknown. In this study, using 7 Tesla MRI, we adopted a network neuroscience approach to characterize the whole-brain functional architecture supporting symbolic and nonsymbolic number comparison in 33 adults. Results showed the degree of global modularity was similar for both formats. The symbolic format, however, elicited stronger community membership among auditory regions, whereas for nonsymbolic, stronger membership was observed within and between cingulo-opercular/salience network and basal ganglia communities. The right posterior inferior temporal gyrus, left intraparietal sulcus, and two regions in the right ventromedial occipital cortex demonstrated robust differences between formats in terms of their community membership, supporting prior findings that these areas are differentially engaged based on number format. Furthermore, a unified fronto-parietal/dorsal attention community in the nonsymbolic condition was fractionated into two components in the symbolic condition. Taken together, these results reveal a pattern of overlapping and distinct network architectures for symbolic and nonsymbolic number processing.

11.
Neuroimage ; 214: 116716, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32151762

RESUMO

A region in the posterior inferior temporal gyrus (pITG) is thought to be specialized for processing Arabic numerals, but fMRI studies that compared passive viewing of numerals to other character types (e.g., letters and novel characters) have not found evidence of numeral preference in the pITG. However, recent studies showed that the engagement of the pITG is modulated by attention and task contexts, suggesting that passive viewing paradigms may be ill-suited for examining numeral specialization in the pITG. It is possible, however, that even if the strengths of responses to different category types are similar, the distributed response patterns (i.e., neural representations) in a candidate numeral-preferring pITG region ("pITG-numerals") may reveal categorical distinctions, even during passive viewing. Using representational similarity analyses with three datasets that share the same task paradigm and stimulus sets (total N â€‹= â€‹88), we tested whether the neural representations of digits, letters, and novel characters in pITG-numerals were organized according to visual form and/or conceptual categories (e.g., familiar versus novel, numbers versus others). Small-scale frequentist and Bayesian meta-analyses of our dataset-specific findings revealed that the organization of neural representations in pITG-numerals is unlikely to be described by differences in abstract shape, but can be described by a categorical "digits versus letters" distinction, or even a "digits versus others" distinction (suggesting greater numeral sensitivity). Evidence of greater numeral sensitivity during passive viewing suggest that pITG-numerals is likely part of a neural pathway that has been developed for automatic processing of objects with potential numerical relevance. Given that numerals and letters do not differ categorically in terms of shape, categorical distinction in pITG-numerals during passive viewing must reflect ontogenetic differentiation of symbol set representations based on repeated usage of numbers and letters in differing task contexts.


Assuntos
Córtex Cerebral/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
12.
Cereb Cortex Commun ; 1(1): tgaa038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296107

RESUMO

Debate continues on whether encoding of symbolic number is grounded in nonsymbolic numerical magnitudes. Nevertheless, fluency of perceiving both number formats, and translating between them, predicts math skills across the life span. Therefore, this study asked if numbers share cortical activation patterns across formats and tasks, and whether neural response to number predicts math-related behaviors. We analyzed patterns of neural activation using 7 Tesla functional magnetic resonance imaging in a sample of 39 healthy adults. Discrimination was successful between numerosities 2, 4, 6, and 8 dots and generalized to activation patterns of the same numerosities represented as Arabic digits in the bilateral parietal lobes and left inferior frontal gyrus (IFG) (and vice versa). This indicates that numerosity-specific neural resources are shared between formats. Generalization was also successful across tasks where participants either identified or compared numerosities in bilateral parietal lobes and IFG. Individual differences in decoding did not relate to performance on a number comparison task completed outside of the scanner, but generalization between formats and across tasks negatively related to math achievement in the parietal lobes. Together, these findings suggest that individual differences in representational specificity within format and task contexts relate to mathematical expertise.

13.
Child Dev ; 91(2): 596-619, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30597527

RESUMO

Deficits in numerical magnitude perception characterize the mathematics learning disability developmental dyscalculia (DD), but recent studies suggest the relation stems from inhibitory control demands from incongruent visual cues in the nonsymbolic number comparison task. This study investigated the relation among magnitude perception during differing congruency conditions, executive function, and mathematics achievement measured longitudinally in children (n = 448) from ages 4 to 13. This relation was investigated across achievement groups and as it related to mathematics across the full range of achievement. Only performance on incongruent trials related to achievement. Findings indicate that executive function in a numerical context, beyond magnitude perception or executive function in a non-numerical context, relates to DD and mathematics across a wide range of achievement.


Assuntos
Discalculia/psicologia , Escolaridade , Função Executiva , Matemática , Adolescente , Análise de Variância , Criança , Pré-Escolar , Feminino , Humanos , Individualidade , Estudos Longitudinais , Masculino
14.
Acta Psychol (Amst) ; 198: 102877, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31310890

RESUMO

Humans tend to be inaccurate and inconsistent when estimating a large number of objects. Furthermore, we modify our estimates when feedback or a reference array is provided, indicating that the mappings between perceived numerosity and their corresponding numerals are largely malleable in response to calibration. However, there is great variability in response to calibration across individuals. Using uncalibrated and calibrated numerosity estimation conditions, the current study explored the factors underlying individual differences in the extent and nature of the malleability of numerosity estimation performance as a result of calibration in a sample of 71 undergraduate students. We found that individual differences in performance were reliable across conditions, and participants' responses to calibration varied greatly. Participants who were less consistent or had more proportionally spaced (i.e., linear) estimates before calibration tended to shift the distributions of their estimates to a greater extent. Higher calculation competence also predicted an increase in how linear participants' estimates were after calibration. Moreover, the effect of calibration was not continuous across numerosities within participants. This suggests that the mechanisms underlying numeral-numerosity mappings may be less systematic than previously thought and likely depend on cognitive mechanisms beyond representation of numerosities. Taken together, the mappings between numerosities and numerical symbols may not be stable and direct, but transient and mediated by task-related (e.g., strategic) mechanisms. Rather than estimation skills being foundational for math competence, math competence may also influence estimation skills. Therefore, numerosity estimation tasks are not a pure measure of number representations.


Assuntos
Individualidade , Matemática/métodos , Estimulação Luminosa/métodos , Adolescente , Calibragem , Feminino , Humanos , Masculino , Adulto Jovem
15.
Neuroimage ; 185: 245-254, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30342974

RESUMO

The dominant model of number processing suggests the existence of a Number Form Area (NFA) in the inferior temporal gyrus (ITG) that supports the processing of Arabic digits as visual symbols of number. However, studies have produced inconsistent evidence for the presence and laterality of digit-specific ITG activity. Furthermore, whether any such activity relates to mathematical competence is unknown. This study investigated these two issues using functional magnetic resonance imaging. Thirty-two adults performed digit and letter detection tasks and reading and mathematics tests. During digit detection, participants determined whether digits were present in a string of letters (e.g., AH3NR versus AHTNR). During letter detection, participants determined whether letters were present in a string of digits (e.g., 93R78 versus 93478). Results showed four clusters in frontal, occipital, and temporal regions for digit detection, including a left ITG cluster. Five clusters in frontal, parietal, occipital, and temporal regions were associated with letter detection, including a left ITG cluster. Digit and letter-related ITG clusters were spatially distinct; however, a direct contrast of digit and letter processing did not reveal greater activity in the left ITG for digit detection. Whole brain correlations showed greater digit-related activity in the right ITG for participants with higher calculation skills, but there was no correlation between letter activity and calculation skills. Together, our results suggest functional localization, but not specialization, for digits in the left ITG and provide the first evidence of a relationship between calculation skills and digit processing in the right ITG.


Assuntos
Conceitos Matemáticos , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Adolescente , Mapeamento Encefálico/métodos , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
16.
Hum Brain Mapp ; 40(3): 928-943, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30387895

RESUMO

Research indicates that the neurocognitive system representing nonsymbolic numerical magnitudes is foundational for the development of mathematical competence. However, recent studies found that the most common task used to measure numerical acuity, the nonsymbolic number comparison task, is heavily influenced by non-numerical visual parameters of stimuli that increase executive function demands. Further, this influence may be a confound invalidating theoretical accounts of the relation between number comparison performance and mathematical competence. Instead of acuity, the relation may depend on one's ability to attend to numerical information in the face of competing, non-numerical cues. The current study investigated this issue by measuring neural activity associated with numerical magnitude processing acuity, domain-general attention, and selective attention to number via functional magnetic resonance imaging while children 8-11 years old completed a nonsymbolic number comparison task and a flanker task. Results showed that activation in the right inferior frontal gyrus during incongruent versus congruent trials of the comparison task, our construct for attention to number, predicted mathematics achievement after controlling for verbal IQ, flanker accuracy rate, and the neural congruency effect from the flanker task. In contrast, activity in frontal and parietal regions responding to differences in difficulty of numerical comparisons, our construct for numerical magnitude processing acuity, did not correlate with achievement. Together, these findings suggest a need to reframe existing models of the relation between number processing and math competence to include the interaction between attention and use of numerical information, or in other words "attention to number."


Assuntos
Sucesso Acadêmico , Atenção/fisiologia , Inteligência/fisiologia , Conceitos Matemáticos , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico/métodos , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Matemática
17.
Dev Sci ; 21(2)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256036

RESUMO

The development of math skills is a critical component of early education and a strong indicator of later school and economic success. Recent research utilizing population-normed, standardized measures of math achievement suggest that structural and functional integrity of parietal regions, especially the intraparietal sulcus, are closely related to the development of math skills. However, it is unknown how these findings relate to in-school math learning. The present study is the first to address this issue by investigating the relationship between regional differences in grey matter (GM) volume and performance in grade-level mathematics as measured by a state-wide, school-based test of math achievement (TCAP math) in children from 3rd to 8th grade. Results show that increased GM volume in the bilateral hippocampal formation and the right inferior frontal gyrus, regions associated with learning and memory, is associated with higher TCAP math scores. Secondary analyses revealed that GM volume in the left angular gyrus had a stronger relationship to TCAP math in grades 3-4 than in grades 5-8 while the relationship between GM volume in the left inferior frontal gyrus and TCAP math was stronger for grades 5-8. These results suggest that the neuroanatomical architecture related to in-school math achievement differs from that related to math achievement measured by standardized tests, and that the most related neural structures differ as a function of grade level. We suggest, therefore, that the use of school-relevant outcome measures is critical if neuroscience is to bridge the gap to education.


Assuntos
Logro , Substância Cinzenta/fisiologia , Matemática , Sucesso Acadêmico , Adolescente , Criança , Feminino , Humanos , Masculino , Lobo Parietal , Instituições Acadêmicas
18.
Dev Cogn Neurosci ; 30: 280-290, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28268177

RESUMO

The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Matemática/métodos , Lobo Parietal/crescimento & desenvolvimento , Adulto , Feminino , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos
19.
Neuroimage ; 159: 430-442, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28801254

RESUMO

Nonsymbolic numerical comparison task performance (whereby a participant judges which of two groups of objects is numerically larger) is thought to index the efficiency of neural systems supporting numerical magnitude perception, and performance on such tasks has been related to individual differences in math competency. However, a growing body of research suggests task performance is heavily influenced by visual parameters of the stimuli (e.g. surface area and dot size of object sets) such that the correlation with math is driven by performance on trials in which number is incongruent with visual cues. Almost nothing is currently known about whether the neural correlates of nonsymbolic magnitude comparison are also affected by visual congruency. To investigate this issue, we used functional magnetic resonance imaging (fMRI) to analyze neural activity during a nonsymbolic comparison task as a function of visual congruency in a sample of typically developing high school students (n = 36). Further, we investigated the relation to math competency as measured by the preliminary scholastic aptitude test (PSAT) in 10th grade. Our results indicate that neural activity was modulated by the ratio of the dot sets being compared in brain regions previously shown to exhibit an effect of ratio (i.e. left anterior cingulate, left precentral gyrus, left intraparietal sulcus, and right superior parietal lobe) when calculated from the average of congruent and incongruent trials, as it is in most studies, and that the effect of ratio within those regions did not differ as a function of congruency condition. However, there were significant differences in other regions in overall task-related activation, as opposed to the neural ratio effect, when congruent and incongruent conditions were contrasted at the whole-brain level. Math competency negatively correlated with ratio-dependent neural response in the left insula across congruency conditions and showed distinct correlations when split across conditions. There was a positive correlation between math competency in the right supramarginal gyrus during congruent trials and a negative correlation in the left angular gyrus during incongruent trials. Together, these findings support the idea that performance on the nonsymbolic comparison task relates to math competency and ratio-dependent neural activity does not differ by congruency condition. With regards to math competency, congruent and incongruent trials showed distinct relations between math competency and individual differences in ratio-dependent neural activity.


Assuntos
Sucesso Acadêmico , Encéfalo/fisiologia , Cognição/fisiologia , Conceitos Matemáticos , Adolescente , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
20.
Neurosci Biobehav Rev ; 78: 145-160, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28467892

RESUMO

Recent studies report a putative "number form area" (NFA) in the inferior temporal gyrus (ITG) suggested to be specialized for Arabic numeral processing. However, a number of earlier studies report no such NFA. The reasons for such discrepancies across studies are unclear. To examine evidence for a convergent NFA across studies, we conducted two activation likelihood estimation meta-analyses on 31 and a subset of 20 neuroimaging studies that have contrasted digits with other meaningful symbols. Results suggest the potential existence of an NFA in the right ITG, in addition to a 'symbolic number processing network' comprising bilateral parietal regions, and right-lateralized superior and inferior frontal regions. Critically, convergent localization for the NFA was only evident when contrasts were appropriately controlled for task demands, and does not appear to depend on employing methods designed to overcome fMRI signal dropout in the ITG. Importantly, only five studies had foci within the identified ITG NFA cluster boundary, indicating that more empirical evidence is necessary to determine the true functional specialization and regional specificity of the putative NFA.


Assuntos
Neuroimagem Funcional , Encéfalo , Mapeamento Encefálico , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...