Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 112(5): 395-416, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34002228

RESUMO

The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.


Assuntos
Plumas , Papagaios , Animais , Carotenoides , Genoma , Pigmentação/genética
2.
Microbiome ; 8(1): 93, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534596

RESUMO

BACKGROUND: The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS: We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION: Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract.


Assuntos
Elasmobrânquios/microbiologia , Peixes/microbiologia , Tegumento Comum/microbiologia , Metagenômica , Microbiota/genética , Filogenia , Simbiose , Animais , Bactérias/genética , Bactérias/isolamento & purificação
3.
Evolution ; 74(6): 1155-1169, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32333393

RESUMO

Although evolutionary theory predicts an association between the evolution of elaborate ornamentation and speciation, empirical evidence for links between speciation and ornament evolution has been mixed. In birds, the evolution of increasingly complex and colorful plumage may promote speciation by introducing prezygotic mating barriers. However, overall changes in color complexity, including both increases and decreases, may also promote speciation by altering the sexual signals that mediate reproductive choices. Here, we examine the relationship between complex plumage and speciation rates in the largest family of songbirds, the tanagers (Thraupidae). First, we test whether species with more complex plumage coloration are associated with higher speciation rates and find no correlation. We then test whether rates of male or female plumage color complexity evolution are correlated with speciation rates. We find that elevated rates of plumage complexity evolution are associated with higher speciation rates, regardless of sex and whether species are evolving more complex or less complex ornamentation. These results extend to whole-plumage color complexity and regions important in signaling (crown and throat) but not nonsignaling regions (back and wingtip). Our results suggest that the extent of change in plumage traits, rather than overall values of plumage complexity, may play a role in speciation.


Assuntos
Especiação Genética , Pigmentação/genética , Seleção Sexual , Aves Canoras/genética , Animais , Plumas , Feminino , Masculino , Filogenia
4.
J Anat ; 229(1): 114-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969851

RESUMO

Bat wings, like other mammalian forelimbs, contain many joints within the digits. These joints collectively affect dynamic three-dimensional (3D) wing shape, thereby affecting the amount of aerodynamic force a wing can generate. Bats are a speciose group, and show substantial variation in the number of wing joints. Additionally, some bat species have joints with extensor but no flexor muscles. While several studies have examined the diversity in number of joints and presence of muscles, musculoskeletal variation in the digits has not been interpreted in phylogenetic, functional or ecological contexts. To provide this context, the number of joints and the presence/absence of muscles are quantified for 44 bat species, and are mapped phylogenetically. It is shown that, relative to the ancestral state, joints and muscles were lost multiple times from different digits and in many lineages. It is also shown that joints lacking flexors undergo cyclical flexion and extension, in a manner similar to that observed in joints with both flexors and extensors. Comparison of species with contrasting feeding ecologies demonstrates that species that feed primarily on non-mobile food (e.g. fruit) have fewer fully active joints than species that catch mobile prey (e.g. insects). It is hypothesized that there is a functional trade-off between energetic savings and maneuverability. Having fewer joints and muscles reduces the mass of the wing, thereby reducing the energetic requirements of flapping flight, and having more joints increases the assortment of possible 3D wing shapes, thereby enhancing the range and fine control of aerodynamic force production and thus maneuverability.


Assuntos
Quirópteros/anatomia & histologia , Voo Animal/fisiologia , Articulações/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Fenômenos Biomecânicos , Quirópteros/fisiologia , Articulações/fisiologia , Filogenia , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...