Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0266182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390036

RESUMO

We used data collected during a variety of research cruises in the northeastern Chukchi Sea and contributed to the Distributed Biological Observatory to explore the influence of the seasonal change in water masses on the development of the seabird community during the summer. Surveys that included seabird observations and hydrographic sampling were conducted from Alaska's northwestern coast to ~220 km offshore during 2008-2018. Species composition varied geographically, shifting from a nearshore community that included short-tailed shearwaters, loons, and seaducks to an offshore community dominated by crested auklets. Crested auklets were remarkably consistent in their occupation of Hanna Shoal among years and remained in the area throughout the summer. Short-tailed shearwaters exhibited the greatest seasonal and interannual variation in abundance and distribution of the 35 species recorded. They were concentrated south of 71°N and within 50 km of shore in August and tended to spread throughout the region in September. Surface-feeding species like gulls, fulmars, and phalaropes were 1-2 orders of magnitude less abundant and had wider distributions than birds that feed by diving. Including information about hydrography improved the fit of models of seabird density. Seabirds, especially those that breed in the Bering Sea, generally were more abundant in areas dominated by moderate-salinity Bering Sea Water than nearshore in low-salinity Alaska Coastal Water. The distribution of seabirds across the northeastern Chukchi Sea reflected the heterogeneity of oceanic habitats and prey availability over the shallow shelf. Our results will inform efforts to develop ecosystem models that incorporate oceanographic conditions to predict ongoing consequences of climate change.


Assuntos
Charadriiformes , Ecossistema , Animais , Aves , Oceanos e Mares , Estações do Ano , Água
2.
PLoS One ; 16(9): e0258128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591944

RESUMO

Many animals migrate to take advantage of temporal and spatial variability in resources. These benefits are offset with costs like increased energetic expenditure and travel through unfamiliar areas. Differences in the cost-benefit ratio for individuals may lead to partial migration with one portion of a population migrating while another does not. We investigated migration dynamics and winter site fidelity for a long-distance partial migrant, barren ground caribou (Rangifer tarandus granti) of the Teshekpuk Caribou Herd in northern Alaska. We used GPS telemetry for 76 female caribou over 164 annual movement trajectories to identify timing and location of migration and winter use, proportion of migrants, and fidelity to different herd wintering areas. We found within-individual variation in movement behavior and wintering area use by the Teshekpuk Caribou Herd, adding caribou to the growing list of ungulates that can exhibit migratory plasticity. Using a first passage time-net squared displacement approach, we classified 78.7% of annual movement paths as migration, 11.6% as residency, and 9.8% as another strategy. Timing and distance of migration varied by season and wintering area. Duration of migration was longer for fall migration than for spring, which may relate to the latter featuring more directed movement. Caribou utilized four wintering areas, with multiple areas used each year. This variation occurred not just among different individuals, but state sequence analyses indicated low fidelity of individuals to wintering areas among years. Variability in movement behavior can have fitness consequences. As caribou face the pressures of a rapidly warming Arctic and ongoing human development and activities, further research is needed to investigate what factors influence this diversity of behaviors in Alaska and across the circumpolar Arctic.


Assuntos
Migração Animal/fisiologia , Rena , Estações do Ano , Alaska , Animais , Ecossistema , Feminino , Movimento , Telemetria
3.
Mov Ecol ; 9(1): 48, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551820

RESUMO

BACKGROUND: Caribou and reindeer across the Arctic spend more than two thirds of their lives moving in snow. Yet snow-specific mechanisms driving their winter ecology and potentially influencing herd health and movement patterns are not well known. Integrative research coupling snow and wildlife sciences using observations, models, and wildlife tracking technologies can help fill this knowledge void. METHODS: Here, we quantified the effects of snow depth on caribou winter range selection and movement. We used location data of Central Arctic Herd (CAH) caribou in Arctic Alaska collected from 2014 to 2020 and spatially distributed and temporally evolving snow depth data produced by SnowModel. These landscape-scale (90 m), daily snow depth data reproduced the observed spatial snow-depth variability across typical areal extents occupied by a wintering caribou during a 24-h period. RESULTS: We found that fall snow depths encountered by the herd north of the Brooks Range exerted a strong influence on selection of two distinct winter range locations. In winters with relatively shallow fall snow depth (2016/17, 2018/19, and 2019/20), the majority of the CAH wintered on the tundra north of the Brooks Range mountains. In contrast, during the winters with relatively deep fall snow depth (2014/15, 2015/16, and 2017/18), the majority of the CAH caribou wintered in the mountainous boreal forest south of the Brooks Range. Long-term (19 winters; 2001-2020) monitoring of CAH caribou winter distributions confirmed this relationship. Additionally, snow depth affected movement and selection differently within these two habitats: in the mountainous boreal forest, caribou avoided areas with deeper snow, but when on the tundra, snow depth did not trigger significant deep-snow avoidance. In both wintering habitats, CAH caribou selected areas with higher lichen abundance, and they moved significantly slower when encountering deeper snow. CONCLUSIONS: In general, our findings indicate that regional-scale selection of winter range is influenced by snow depth at or prior to fall migration. During winter, daily decision-making within the winter range is driven largely by snow depth. This integrative approach of coupling snow and wildlife observations with snow-evolution and caribou-movement modeling to quantify the multi-facetted effects of snow on wildlife ecology is applicable to caribou and reindeer herds throughout the Arctic.

4.
PLoS One ; 7(11): e48697, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144932

RESUMO

Many caribou (Rangifer tarandus) populations are declining worldwide in part due to disturbance from human development. Prior to human development, important areas of habitat should be identified to help managers minimize adverse effects. Resource selection functions can help identify these areas by providing a link between space use and landscape attributes. We estimated resource selection during five summer periods at two spatial scales for the Teshekpuk Caribou Herd in northern Alaska prior to industrial development to identify areas of high predicted use for the herd. Additionally, given the strong influence parturition and insect harassment have on space use, we determined how selection differed between parturient and non-parturient females, and between periods with and without insect harassment. We used location data acquired between 2004-2010 for 41 female caribou to estimate resource selection functions. Patterns of selection varied through summer but caribou consistently avoided patches of flooded vegetation and selected areas with a high density of sedge-grass meadow. Predicted use by parturient females during calving was almost entirely restricted to the area surrounding Teshekpuk Lake presumably due to high concentration of sedge-grass meadows, whereas selection for this area by non-parturient females was less strong. When insect harassment was low, caribou primarily selected the areas around Teshekpuk Lake but when it was high, caribou used areas having climates where insect abundance would be lower (i.e., coastal margins, gravel bars). Areas with a high probability of use were predominately restricted to the area surrounding Teshekpuk Lake except during late summer when high use areas were less aggregated because of more general patterns of resource selection. Planning is currently underway for establishing where oil and gas development can occur in the herd's range, so our results provide land managers with information that can help predict and minimize impacts of development on the herd.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Rena/fisiologia , Estações do Ano , Alaska , Animais , Comportamento Animal , Feminino , Comportamento de Retorno ao Território Vital , Insetos/fisiologia , Dinâmica Populacional , Gravidez
5.
Oecologia ; 132(2): 286-295, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28547364

RESUMO

Populations of the pigeon guillemot (Cepphus columba) and other piscivores have been in decline for several decades in the Gulf of Alaska and Bering Sea, and a decline in abundance of lipid-rich schooling fishes is hypothesized as the major cause. We tested this hypothesis by studying the breeding biology of pigeon guillemots during 1995-1999 while simultaneously measuring prey abundance with beach seines and bottom trawls. Our study area (Kachemak Bay, Alaska) comprises two oceanographically distinct areas. Populations of a lipid-rich schooling fish, Pacific sand lance (Ammodytes hexapterus), were higher in the warmer Inner Bay than in the colder Outer Bay, and sand lance abundance was higher during warm years. Populations of low-lipid content demersal fishes were similar between areas. Chick survival to age 15 days was 47% higher in the Inner Bay (high-lipid diet) than in the Outer Bay (low-lipid diet), and estimated reproductive success (chicks fledged nest-1) was 62% higher in the Inner Bay than in the Outer Bay. Chick provisioning rate (kJ chick-1 h-1) increased with the proportion of sand lance in the diet (r 2=0.21), as did growth rate (g day-1) of younger (beta) chicks in two-chick broods (r 2=0.14). Pigeon guillemots in the Inner Bay switched to demersal prey during years of below-average sand lance abundance, and these birds reacted to 38-fold interannual changes in sand lance abundance with reductions in beta chick growth rates, with no decline in beta chick survival. In contrast, the proportion of nests experiencing brood reduction in the Outer Bay (demersal diet) increased >300% during years of below-average demersal abundance, although demersal fish abundance varied only 4-fold among years. Our results support the hypothesis that recovery of pigeon guillemot populations from the effects of the Exxon Valdez oil spill is limited by availability of lipid-rich prey.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...