Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Microcirculation ; 31(5): e12854, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38690631

RESUMO

OBJECTIVE: Designing physiologically adequate microvascular trees is of crucial relevance for bioengineering functional tissues and organs. Yet, currently available methods are poorly suited to replicate the morphological and topological heterogeneity of real microvascular trees because the parameters used to control tree generation are too simplistic to mimic results of the complex angiogenetic and structural adaptation processes in vivo. METHODS: We propose a method to overcome this limitation by integrating a conditional deep convolutional generative adversarial network (cDCGAN) with a local fractal dimension-oriented constrained constructive optimization (LFDO-CCO) strategy. The cDCGAN learns the patterns of real microvascular bifurcations allowing for their artificial replication. The LFDO-CCO strategy connects the generated bifurcations hierarchically to form microvascular trees with a vessel density corresponding to that observed in healthy tissues. RESULTS: The generated artificial microvascular trees are consistent with real microvascular trees regarding characteristics such as fractal dimension, vascular density, and coefficient of variation of diameter, length, and tortuosity. CONCLUSIONS: These results support the adoption of the proposed strategy for the generation of artificial microvascular trees in tissue engineering as well as for computational modeling and simulations of microcirculatory physiology.


Assuntos
Simulação por Computador , Microcirculação , Microvasos , Microvasos/fisiologia , Microvasos/anatomia & histologia , Humanos , Microcirculação/fisiologia , Modelos Cardiovasculares , Fractais
2.
Microvasc Res ; 139: 104259, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624307

RESUMO

Blood flow pulsatility is an important determinant of macro- and microvascular physiology. Pulsatility is damped largely in the microcirculation, but the characteristics of this damping and the factors that regulate it have not been fully elucidated yet. Applying computational approaches to real microvascular network geometry, we examined the pattern of pulsatility damping and the role of potential damping factors, including pulse frequency, vascular viscous resistance, vascular compliance, viscoelastic behavior of the vessel wall, and wave propagation and reflection. To this end, three full rat mesenteric vascular networks were reconstructed from intravital microscopic recordings, a one-dimensional (1D) model was used to reproduce pulsatile properties within the network, and potential damping factors were examined by sensitivity analysis. Results demonstrate that blood flow pulsatility is predominantly damped at the arteriolar side and remains at a low level at the venular side. Damping was sensitive to pulse frequency, vascular viscous resistance and vascular compliance, whereas viscoelasticity of the vessel wall or wave propagation and reflection contributed little to pulsatility damping. The present results contribute to our understanding of mechanical forces and their regulation in the microcirculation.


Assuntos
Arteríolas/fisiologia , Mesentério/irrigação sanguínea , Microcirculação , Modelos Cardiovasculares , Fluxo Pulsátil , Circulação Esplâncnica , Vênulas/fisiologia , Animais , Microscopia Intravital , Masculino , Ratos Wistar , Estresse Mecânico , Fatores de Tempo , Resistência Vascular
3.
Angiogenesis ; 25(1): 35-45, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34905124

RESUMO

Angiogenesis describes the formation of new blood vessels from pre-existing vascular structures. While the most studied mode of angiogenesis is vascular sprouting, specific conditions or organs favor intussusception, i.e., the division or splitting of an existing vessel, as preferential mode of new vessel formation. In the present study, sustained (33-h) intravital microscopy of the vasculature in the chick chorioallantoic membrane (CAM) led to the hypothesis of a novel non-sprouting mode for vessel generation, which we termed "coalescent angiogenesis." In this process, preferential flow pathways evolve from isotropic capillary meshes enclosing tissue islands. These preferential flow pathways progressively enlarge by coalescence of capillaries and elimination of internal tissue pillars, in a process that is the reverse of intussusception. Concomitantly, less perfused segments regress. In this way, an initially mesh-like capillary network is remodeled into a tree structure, while conserving vascular wall components and maintaining blood flow. Coalescent angiogenesis, thus, describes the remodeling of an initial, hemodynamically inefficient mesh structure, into a hierarchical tree structure that provides efficient convective transport, allowing for the rapid expansion of the vasculature with maintained blood supply and function during development.


Assuntos
Membrana Corioalantoide , Neovascularização Fisiológica , Animais , Capilares , Morfogênese , Neovascularização Patológica
4.
Microcirculation ; 29(6-7): e12746, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34897901

RESUMO

OBJECTIVE: To establish methods for providing a comprehensive and detailed description of the spatial distribution of the vascular networks, and to reveal the spatiotemporal pattern of the yolk sac membrane vascular network during the angiogenic procedure. METHODS: Addressing the limitations in the conventional local fractal analysis, an improved approach, named scanning average local fractal dimension, was proposed. This method was conducted on 6 high-resolution vascular images of the yolk sac membrane for 3 eggs at two stages (E3 and E4) to characterize the spatial distribution of the complexity of the vascular network. RESULTS: With the proposed method, the spatial distribution of the complexity of the yolk sac membrane vascular network was visualized. From E3 to E4, the local fractal dimension increased in 3 eggs, 1.80 ± 0.02 vs. 1.85 ± 0.02, 1.72 ± 0.03 vs. 1.83 ± 0.02, and 1.77 ± 0.03 vs. 1.82 ± 0.02, respectively. The mean local fractal dimension in the most distal area from the embryo proper was the lowest at E3 while the highest at E4. At E3, the most peaks of the local fractal dimension were located in the vein territories and shifted to artery territories at E4. CONCLUSIONS: The spatial distribution of the complexity of the yolk sac membrane vascular network exhibited diverse patterns at different stages. In addition from E3 to E4, the increment of complexity at the intersection areas between arteries and sinus terminalis was with the most advance. This is consistent with the physiologic evidence. The present work provides a potential approach for investigating the spatiotemporal pattern of the angiogenic process.


Assuntos
Fractais , Saco Vitelino , Saco Vitelino/irrigação sanguínea , Artérias
5.
Clin Sci (Lond) ; 134(12): 1333-1356, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32542397

RESUMO

Chronic kidney disease (CKD) is a relentlessly progressive disease with a very high mortality mainly due to cardiovascular complications. Endothelial dysfunction is well documented in CKD and permanent loss of endothelial homeostasis leads to progressive organ damage. Most of the vast endothelial surface area is part of the microcirculation, but most research in CKD-related cardiovascular disease (CVD) has been devoted to macrovascular complications. We have reviewed all publications evaluating structure and function of the microcirculation in humans with CKD and animals with experimental CKD. Microvascular rarefaction, defined as a loss of perfused microvessels resulting in a significant decrease in microvascular density, is a quintessential finding in these studies. The median microvascular density was reduced by 29% in skeletal muscle and 24% in the heart in animal models of CKD and by 32% in human biopsy, autopsy and imaging studies. CKD induces rarefaction due to the loss of coherent vessel systems distal to the level of smaller arterioles, generating a typical heterogeneous pattern with avascular patches, resulting in a dysfunctional endothelium with diminished perfusion, shunting and tissue hypoxia. Endothelial cell apoptosis, hypertension, multiple metabolic, endocrine and immune disturbances of the uremic milieu and specifically, a dysregulated angiogenesis, all contribute to the multifactorial pathogenesis. By setting the stage for the development of tissue fibrosis and end organ failure, microvascular rarefaction is a principal pathogenic factor in the development of severe organ dysfunction in CKD patients, especially CVD, cerebrovascular dysfunction, muscular atrophy, cachexia, and progression of kidney disease. Treatment strategies for microvascular disease are urgently needed.


Assuntos
Doenças Cardiovasculares/epidemiologia , Microvasos/patologia , Insuficiência Renal Crônica/epidemiologia , Animais , Doenças Cardiovasculares/fisiopatologia , Comorbidade , Humanos , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Microcirculação , Microvasos/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia
7.
Microcirculation ; 27(1): e12590, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520425

RESUMO

OBJECTIVE: In this study, we examined the impact of gap junction blockade on chick chorioallantoic membrane microvessels. METHODS: Expression of Cx37, Cx40/42, and Cx43 in chick chorioallantoic membrane tissue was studied by PCR, Western blot, and confocal immunofluorescence microscopy. Vessel diameter changes occurring under gap junction blockade with carbenoxolone (175 µmol/L), palmitoleic acid (100 µmol/L), 43 GAP27 (1 mmol/L) were analyzed by intravital microscopy. To analyze vascular tone, chick chorioallantoic membrane vessels were exposed to a vasodilator cocktail consisting of acetylcholine (10 µmol/L), adenosine (100 µmol/L), papaverine (200 µmol/L), and sodium nitroprusside (10 µmol/L). RESULTS: In chick chorioallantoic membrane lysates, Western blot analysis revealed the expression of Cx40 and Cx43. Immunofluorescence in intact chick chorioallantoic membrane vasculature showed only Cx43, limited to arterial vessel walls. Upon gap junction blockade (3 hours) arterial and venous diameters decreased to 0.50 ± 0.03 and 0.36 ± 0.06 (carbenoxolone), 0.72 ± 0.08 and 0.63 ± 0.15 (palmitoleic acid) and 0.77 ± 0.004 and 0.58 ± 0.05 (GAP27), relative to initial values. Initially, diameter decrease was dominated by increasing vascular tone. After 6 hours, however, vessel tone was reduced, suggesting structural network remodeling. CONCLUSIONS: Our findings suggest a major role for connexins in mediating acute and chronic diameter changes in developing vascular networks.


Assuntos
Proteínas Aviárias/metabolismo , Membrana Corioalantoide/irrigação sanguínea , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Microvasos/metabolismo , Animais , Embrião de Galinha
9.
Math Med Biol ; 37(1): 40-57, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30892609

RESUMO

In recent years, biological imaging techniques have advanced significantly and it is now possible to digitally reconstruct microvascular network structures in detail, identifying the smallest capillaries at sub-micron resolution and generating large 3D structural data sets of size >106 vessel segments. However, this relies on ex vivo imaging; corresponding in vivo measures of microvascular structure and flow are limited to larger branching vessels and are not achievable in three dimensions for the smallest vessels. This suggests the use of computational modelling to combine in vivo measures of branching vessel architecture and flows with ex vivo data on complete microvascular structures to predict effective flow and pressures distributions. In this paper, a hybrid discrete-continuum model to predict microcirculatory blood flow based on structural information is developed and compared with existing models for flow and pressure in individual vessels. A continuum-based Darcy model for transport in the capillary bed is coupled via point sources of flux to flows in individual arteriolar vessels, which are described explicitly using Poiseuille's law. The venular drainage is represented as a spatially uniform flow sink. The resulting discrete-continuum framework is parameterized using structural data from the capillary network and compared with a fully discrete flow and pressure solution in three networks derived from observations of the rat mesentery. The discrete-continuum approach is feasible and effective, providing a promising tool for extracting functional transport properties in situations where vascular branching structures are well defined.


Assuntos
Microcirculação/fisiologia , Modelos Cardiovasculares , Algoritmos , Animais , Pressão Sanguínea/fisiologia , Simulação por Computador , Hemodinâmica/fisiologia , Humanos , Imageamento Tridimensional , Conceitos Matemáticos , Mesentério/irrigação sanguínea , Microvasos/anatomia & histologia , Microvasos/fisiologia , Ratos , Fluxo Sanguíneo Regional/fisiologia , Circulação Esplâncnica/fisiologia
10.
Microvasc Res ; 125: 103882, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075242

RESUMO

Fractal dimension is a robust fractal parameter for estimating the morphology of vascular networks. It reflects the property of vascular networks that may vary and thus, differentiate between individual networks and/or identify physiological and pathological conditions. As such, fractal dimension differs also between arteriolar and venular compartments, yet the underlying reason is so far unclear. In order to understand the mechanisms behind these differences, we quantitatively analyzed the impacts of vessel attributes on the fractal dimension. Fractal dimension and vessel attributes given by vessel density (VD), vessel length density (VL), and diameter index (DI=VD/VL) were analyzed in three microvascular networks of the rat mesentery, which were reconstructed from experimental data. The results show that differences in diameter between arterioles and venules are primarily responsible for arterio-venous differences in fractal dimension. Moreover, multiple linear regression analysis demonstrates that the sensitivity of the variation of fractal dimension to vessel length and diameter varies with the type of the vessels. While the change of vessel length contributes 57.8 ±â€¯3.4% to the variation of arteriolar dimension, vessel diameter contributes 63.9 ±â€¯4.8% to the variation of venular dimension. The present study provides an explanation for the different fractal dimension and dimension variation in arteriolar and venular compartments. It highlights the importance of estimating the fractal dimensions of arterioles and venules separately, which will enhance the ability of feature extraction by fractal analysis in physiological and clinical application.


Assuntos
Arteríolas/anatomia & histologia , Fractais , Processamento de Imagem Assistida por Computador , Mesentério/irrigação sanguínea , Microscopia de Vídeo , Fotografação , Vênulas/anatomia & histologia , Animais , Valor Preditivo dos Testes , Ratos
11.
Biorheology ; 56(1): 1-13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814342

RESUMO

The hemodynamics of the microcirculation reflect system properties of the involved components. The blood itself is a complex suspension of water, small and large molecules and different cell types. Under most conditions, its rheologic properties are dominated by the different behaviour of fluid and cellular compartments. When perfused through small-bore tubes or vessels, the suspension exhibits specific emergent properties. The Fahraeus-effect and the Fahreaeus-Lindqvist-effect result from the interaction of cellular particles with each other and with the vessel wall. Additional phenomena occur in vascular networks due to the uneven distribution of blood cells and blood plasma at divergent microvascular bifurcations. In order to understand microvascular hemodynamics in vivo but also in artificial microfluidic geometries it is thus necessary to recognize the pertinent system properties on the level of the blood, the microvessels and the microvascular networks or perfused structures.


Assuntos
Hemodinâmica , Microvasos/fisiologia , Animais , Ratos
12.
Am J Med ; 132(8): 921-925, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30853472

RESUMO

Provision and participation in formal external continuing medical education (CME) is costly. Employer or state support of CME is the exception rather than the rule. The medical industry has supported both providers and consumers of educational activities, leading to concerns of commercial bias. Recent medical industry initiatives in Europe to improve the transparency of the relationship between industry and the profession, including the field of medical education, have had the paradoxical effect of the industry playing an increasingly direct role in the provision of physician education. Funding of medical professional society annual congresses has been directly and indirectly jeopardized. Acknowledging that there are areas of cooperation in the field of education between the medical profession and the medical industry from which both can benefit, we argue that medical education requires an objective approach that the primary fiduciary duty of medical industry companies precludes. Medical professional societies, as not-for-profit organizations whose core mission is the development and promotion of best practice, are best placed to guide and deliver medical education to their members.


Assuntos
Educação Médica Continuada/métodos , Educação Médica Continuada/normas , Médicos/normas , Educação Médica Continuada/tendências , Previsões/métodos , Humanos , Médicos/estatística & dados numéricos , Sociedades Médicas/organização & administração , Sociedades Médicas/tendências
14.
Curr Pharm Des ; 24(25): 2893-2899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29938611

RESUMO

BACKGROUND: Ischemic heart disease has long been considered to be exlusively caused by stenosis or occlusion. However, the coronary microcirculation too may play an important role in ischemic conditions. Also, the crucial role of microvessels in not only regulating blood flow on a local level but also mediating vascular permeability or inflammatory responses has been recognized. OBJECTIVE: To review important physiological and pathophysiological mechanisms of coronary microcirculatory control with focus on heterogeneity of local perfusion, microvascular permeability and inflammation. METHOD: Selective research of the literature. RESULTS: Heterogeneity is a characteristic of microvascular networks and affects structural and functional parameters such as vessel diameter, length, and connection pattern, flow velocity, wall shear stress, and oxygenation. Microvascular networks are optimized to meet the metabolic demand of all tissue compartments. This requires continuous vascular adaptation regulated by local hemodynamic and metabolic stimuli. Compromising this regulation results in functional arterio-venous shunting and tissue areas with either hyperperfusion or hypoxia in close proximity. In ischemia-reperfusion, increased microvascular permeability may aggravate tissue hypoxia by increasing extravascular pressure and seems to contribute to adverse myocardial remodeling. Transendothelial transport mechanisms and deterioration of the endothelial glycocalyx seem to be major contributors to tissue edema. Also in the context of ischemia-reperfusion, an inflammatory response mediated by venular endothelium expressing specific adhesion molecules contributes to tissue injury. However, anti-inflammatory therapies failed in clinical studies and a multi-targeted approach for cardiac protection is required. CONCLUSION: Disturbances of the coronary microcirculation are involved in different pathophysiological aspects of reperfusion injury.


Assuntos
Circulação Coronária , Cardiopatias/fisiopatologia , Isquemia/fisiopatologia , Cardiopatias/metabolismo , Humanos , Isquemia/metabolismo
15.
Microcirculation ; 25(5): e12458, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729094

RESUMO

OBJECTIVE: PWV is the speed of pulse wave propagation through the circulatory system. mPWV emerges as a novel indicator of hypertension, yet it remains unclear how different vascular properties affect mPWV. We aim to identify the biomechanical determinants of mPWV. METHODS: A 1D model was used to simulate PWV in a rat mesenteric microvascular network and, for comparison, in a human macrovascular arterial network. Sensitivity analysis was performed to assess the relationship between PWV and vascular compliance and resistance. RESULTS: The 1D model enabled adequate simulation of PWV in both micro- and macrovascular networks. Simulated arterial PWV changed as a function of vascular compliance but not resistance, in that arterial PWV varied at a rate of 0.30 m/s and -6.18 × 10-3  m/s per 10% increase in vascular compliance and resistance, respectively. In contrast, mPWV depended on both vascular compliance and resistance, as it varied at a rate of 2.79 and -2.64 cm/s per 10% increase in the respective parameters. CONCLUSIONS: The present study identifies vascular compliance and resistance in microvascular networks as critical determinants of mPWV. We anticipate that mPWV can be utilized as an effective indicator for the assessment of microvascular biomechanical properties.


Assuntos
Microcirculação/fisiologia , Análise de Onda de Pulso , Resistência Vascular/fisiologia , Animais , Fenômenos Biomecânicos , Complacência (Medida de Distensibilidade)/fisiologia , Biologia Computacional , Humanos , Modelos Teóricos , Ratos , Circulação Esplâncnica
16.
Sci Rep ; 8(1): 5317, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593228

RESUMO

Chronic kidney disease (CKD) is associated with excessive mortality from cardiovascular disease (CVD). Endothelial dysfunction, an early manifestation of CVD, is consistently observed in CKD patients and might be linked to structural defects of the microcirculation including microvascular rarefaction. However, patterns of microvascular rarefaction in CKD and their relation to functional deficits in perfusion and oxygen delivery are currently unknown. In this in-vivo microscopy study of the cremaster muscle microcirculation in BALB/c mice with moderate to severe uremia, we show in two experimental models (adenine feeding or subtotal nephrectomy), that serum urea levels associate incrementally with a distinct microangiopathy. Structural changes were characterized by a heterogeneous pattern of focal microvascular rarefaction with loss of coherent microvascular networks resulting in large avascular areas. Corresponding microvascular dysfunction was evident by significantly diminished blood flow velocity, vascular tone, and oxygen uptake. Microvascular rarefaction in the cremaster muscle paralleled rarefaction in the myocardium, which was accompanied by a decrease in transcription levels not only of the transcriptional regulator HIF-1α, but also of its target genes Angpt-2, TIE-1 and TIE-2, Flkt-1 and MMP-9, indicating an impaired hypoxia-driven angiogenesis. Thus, experimental uremia in mice associates with systemic microvascular disease with rarefaction, tissue hypoxia and dysfunctional angiogenesis.


Assuntos
Hipóxia/etiologia , Hipóxia/metabolismo , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Insuficiência Renal Crônica/complicações , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Músculos Abdominais/irrigação sanguínea , Animais , Biomarcadores , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Vasos Coronários , Modelos Animais de Doenças , Migração e Rolagem de Leucócitos/imunologia , Masculino , Camundongos , Microcirculação , Rarefação Microvascular , Miocárdio , Neovascularização Patológica/fisiopatologia , Oxigênio/metabolismo , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/metabolismo , Índice de Gravidade de Doença , Uremia/diagnóstico , Uremia/etiologia , Doenças Vasculares/fisiopatologia
17.
Microcirculation ; 25(3): e12445, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29457313

RESUMO

OBJECTIVE: Theoretical models are essential tools for studying microcirculatory function. Recently, the validity of a well-established phase separation model was questioned and it was claimed that it produces problematically low hematocrit predictions and lack of red cells in small diameter vessels. We conducted a quantitative evaluation of this phase separation model to establish common ground for future research. METHODS: Model predictions were validated against a comprehensive database with measurements from 4 mesenteric networks. A Bayesian data analysis framework was used to integrate measurements and network model simulations into a combined analysis and to model uncertainties related to network boundary conditions as well as phase separation model parameters. The model evaluation was conducted within a cross-validation scheme. RESULTS: Unlike the recently reported results, our analysis demonstrated good correspondence in global characteristics between measurements and predictions. In particular, predicted hematocrits for vessels with small diameters were consistent with measurements. Incorporating phase separation model parameter uncertainties further reduced the hematocrit validation error by 17% and led to the absence of red-cell-free segments. Corresponding model parameters are presented as alternatives to standard parameters. CONCLUSIONS: Consistent with earlier studies, our quantitative model evaluation supports the continued use of the established phase separation model.


Assuntos
Hematócrito , Microcirculação , Modelos Teóricos , Animais , Teorema de Bayes , Eritrócitos/citologia , Humanos , Microvasos/fisiologia , Modelos Biológicos
18.
Eur Heart J ; 39(25): 2423-2430, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449050

RESUMO

Aims: The burden of cardiovascular disease is increasing worldwide, which has to be reflected by cardiovascular (CV) research in Europe. CardioScape, a FP7 funded project initiated by the European Society of Cardiology (ESC), identified where CV research is performed, how it is funded and by whom. It could be transformed into an on-line and up-to-date resource of great relevance for researchers, funding bodies and policymakers and could be a role model for mapping CV research funding in Europe and beyond. Methods and results: Relevant funding bodies in 28 European Union (EU) countries were identified by a multistep process involving experts in each country. Projects above a funding threshold of 100 k€ during the period 2010-2012 were included using a standard questionnaire. Results were classified by experts and an adaptive text analysis software to a CV-research taxonomy, integrating existing schemes from ESC journals and congresses. An on-line query portal was set up to allow different users to interrogate the database according to their specific viewpoints. Conclusion: CV-research funding varies strongly between different nations with the EU providing 37% of total available project funding and clear geographical gradients exist. Data allow in depth comparison of funding for different research areas and led to a number of recommendations by the consortium. CardioScape can support CV research by aiding researchers, funding agencies and policy makers in their strategic decisions thus improving research quality if CardioScape strategy and technology becomes the basis of a continuously updated and expanded European wide publicly accessible database.


Assuntos
Pesquisa Biomédica/economia , Doenças Cardiovasculares , Administração Financeira , Europa (Continente) , União Europeia , Humanos
19.
J Leukoc Biol ; 103(1): 67-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821572

RESUMO

Human and mouse neutrophils are known to form tethers when rolling on selectins in vitro. Tethers are ∼0.2 µm thin, ∼5-10 µm-long structures behind rolling cells that can swing around to form slings that serve as self-adhesive substrates. Here, we developed a mouse intravital imaging method, where the neutrophil surface is labeled by injecting fluorescently labeled mAb to Ly-6G. Venules in the cremaster muscle of live mice were imaged at a high frame rate using a confocal microscope equipped with a fast resonant scanner. We observed 270 tethers (median length 3.5 µm) and 31 slings (median length 6.9 µm) on 186 neutrophils of 15 mice. Out of 199 tether break events, 123 were followed by immediate acceleration of the rolling cell, which shows that tethers are load-bearing structures in vivo. In venules with a high wall shear stress (WSS; > 12 dyn/cm2 ), median rolling velocity was higher (19 µm/s), and 43% of rolling neutrophils had visible tethers. In venules with WSS < 12 dyn/cm2 , only 26% of rolling neutrophils had visible tethers. We conclude that neutrophil tethers are commonly present and stabilize rolling in vivo.


Assuntos
Migração e Rolagem de Leucócitos/fisiologia , Neutrófilos/citologia , Neutrófilos/fisiologia , Resistência ao Cisalhamento/fisiologia , Estresse Mecânico , Animais , Adesão Celular , Movimento Celular , Microscopia Intravital , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Front Physiol ; 8: 813, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114229

RESUMO

Diameters of microvessels undergo continuous structural adaptation in response to hemodynamic and metabolic stimuli. To ensure adequate flow distribution, metabolic responses are needed to increase diameters of vessels feeding poorly perfused regions. Possible modes of metabolic control include release of signaling substances from vessel walls, from the supplied tissue and from red blood cells (RBC). Here, a theoretical model was used to compare the abilities of these metabolic control modes to provide adequate tissue oxygenation, and to generate blood flow velocities in agreement with experimental observations. Structural adaptation of vessel diameters was simulated for an observed mesenteric network structure in the rat with 576 vessel segments. For each mode of metabolic control, resulting distributions of oxygen and deviations between simulated and experimentally observed flow velocities were analyzed. It was found that wall-derived and tissue-derived growth signals released in response to low oxygen levels could ensure adequate oxygen supply, but RBC-derived signals caused inefficient oxygenation. Closest agreement between predicted and observed flow velocities was obtained with wall-derived growth signals proportional to vessel length. Adaptation in response to oxygen-independent release of a metabolic signal substance from vessel walls or the supplied tissue was also shown to be effective for ensuring tissue oxygenation due to a dilution effect if growth signal substances are released into the blood. The present results suggest that metabolic signals responsible for structural adaptation of microvessel diameters are derived from vessel walls or from perivascular tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...