Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 67: 101265, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571702

RESUMO

This systematic review and meta-analysis aimed to examine the effects of home-based exercise programmes on measures of physical-fitness in healthy older adults. Seventeen randomized-controlled trials were included with a total of 1,477 participants. Results indicated small effects of home-based training on muscle strength (between-study standardised-mean-difference [SMD] = 0.30), muscle power (SMD = 0.43), muscular endurance (SMD = 0.28), and balance (SMD = 0.28). We found no statistically significant effects for single-mode strength vs. multimodal training (e.g., combined balance, strength, and flexibility exercises) on measures of muscle strength and balance. Single-mode strength training had moderate effects on muscle strength (SMD = 0.51) and balance (SMD = 0.65) while multimodal training had no statistically significant effects on muscle strength and balance. Irrespective of the training type, >3 weekly sessions produced larger effects on muscle strength (SMD = 0.45) and balance (SMD = 0.37) compared with ≤3 weekly sessions (muscle strength: SMD = 0.28; balance: SMD = 0.24). For session-duration, only ≤30 min per-session produced small effects on muscle strength (SMD = 0.35) and balance (SMD = 0.34). No statistically significant differences were observed between all independently-computed single-training factors. Home-based exercise appears effective to improve components of health- (i.e., muscle strength and muscular endurance) and skill-related (i.e., muscle power, balance) physical-fitness. Therefore, in times of restricted physical activity due to pandemics, home-based exercises constitute an alternative to counteract physical inactivity and preserve/improve the health and fitness of healthy older adults aged 65-to-83 years.


Assuntos
COVID-19 , Treinamento Resistido , Idoso , Idoso de 80 Anos ou mais , Terapia por Exercício , Humanos , Força Muscular , Aptidão Física , SARS-CoV-2
2.
Scand J Med Sci Sports ; 27(10): 1090-1098, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27460831

RESUMO

The purpose of this study was to examine whether drop height-induced changes in leg muscle activity during drop jumps (DJ) are additionally modulated by surface condition. Twenty-four healthy participants (23.7 ± 1.8 years) performed DJs on a force plate on stable, unstable, and highly unstable surfaces using different drop heights (i.e., 20 cm, 40 cm, 60 cm). Electromyographic (EMG) activity of soleus (SOL), gastrocnemius (GM), tibialis anterior (TA) muscles and coactivation of TA/SOL and TA/GM were analyzed for time intervals 100 ms prior to ground contact (preactivation) and 30-60 ms after ground contact [short latency response (SLR)]. Increasing drop heights resulted in progressively increased SOL and GM activity during preactivation and SLR (P < 0.01; 1.01 ≤ d ≤ 5.34) while TA/SOL coactivation decreased (P < 0.05; 0.51 ≤ d ≤ 3.01). Increasing surface instability produced decreased activities during preactivation (GM) and SLR (GM, SOL) (P < 0.05; 1.36 ≤ d ≤ 4.30). Coactivation increased during SLR (P < 0.05; 1.50 ≤ d ≤ 2.58). A significant drop height × surface interaction was observed for SOL during SLR. Lower SOL activity was found on unstable compared to stable surfaces for drop heights ≥40 cm (P < 0.05; 1.25 ≤ d ≤ 2.12). Findings revealed that instability-related changes in activity of selected leg muscles are minimally affected by drop height.


Assuntos
Desempenho Atlético/fisiologia , Músculo Esquelético/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Perna (Membro) , Masculino , Propriedades de Superfície , Suporte de Carga , Adulto Jovem
3.
Scand J Med Sci Sports ; 26(10): 1140-50, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26369626

RESUMO

It has previously been shown that fatigue and unstable surfaces affect jump performance. However, the combination thereof is unresolved. Thus, the purpose of this study was to examine the effects of fatigue and surface instability on jump performance and leg muscle activity. Twenty elite volleyball players (18 ± 2 years) performed repetitive vertical double-leg box jumps until failure. Before and after a fatigue protocol, jump performance (i.e., jump height) and electromyographic activity of selected lower limb muscles were recorded during drop jumps (DJs) and countermovement jumps (CMJs) on a force plate on stable and unstable surfaces (i.e., balance pad on top of force plate). Jump performance (3-7%; P < 0.05; 1.14 ≤ d ≤ 2.82), and muscle activity (2-27%; P < 0.05; 0.59 ≤ d ≤ 3.13) were lower following fatigue during DJs and CMJs, and on unstable compared with stable surfaces during DJs only (jump performance: 8%; P < 0.01; d = 1.90; muscle activity: 9-25%; P < 0.05; 1.08 ≤ d ≤ 2.54). No statistically significant interactions of fatigue by surface condition were observed. Our findings revealed that fatigue impairs neuromuscular performance during DJs and CMJs in elite volleyball players, whereas surface instability affects neuromuscular DJ performance only. Absent fatigue × surface interactions indicate that fatigue-induced changes in jump performance are similar on stable and unstable surfaces in jump-trained athletes.


Assuntos
Desempenho Atlético/fisiologia , Fadiga/fisiopatologia , Movimento/fisiologia , Voleibol/fisiologia , Adolescente , Eletromiografia , Fadiga/complicações , Feminino , Músculos Isquiossurais/fisiologia , Humanos , Masculino , Músculo Quadríceps/fisiologia , Propriedades de Superfície , Adulto Jovem
4.
Scand J Med Sci Sports ; 26(1): 48-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25559249

RESUMO

Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 ± 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band® Stability Trainer, Togu© Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P < 0.05, d = 0.86), 10-20-m sprint time (3%, P < 0.05, d = 2.56), and kicking performance (1%, P < 0.01, d = 1.28). No significant Group × test interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training.


Assuntos
Desempenho Atlético/fisiologia , Força Muscular/fisiologia , Treinamento Resistido/métodos , Futebol/fisiologia , Adolescente , Humanos , Masculino
5.
Int J Sports Med ; 36(5): 386-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25665004

RESUMO

The purpose of this study was to investigate the effects of plyometric training on stable (SPT) vs. highly unstable surfaces (IPT) on athletic performance in adolescent soccer players. 24 male sub-elite soccer players (age: 15±1 years) were assigned to 2 groups performing plyometric training for 8 weeks (2 sessions/week, 90 min each). The SPT group conducted plyometrics on stable and the IPT group on unstable surfaces. Tests included jump performance (countermovement jump [CMJ] height, drop jump [DJ] height, DJ performance index), sprint time, agility and balance. Statistical analysis revealed significant main effects of time for CMJ height (p<0.01, f=1.44), DJ height (p<0.01, f=0.62), DJ performance index (p<0.05, f=0.60), 0-10-m sprint time (p<0.05, f=0.58), agility (p<0.01, f=1.15) and balance (p<0.05, 0.46≤f≤1.36). Additionally, a Training group×Time interaction was found for CMJ height (p<0.01, f=0.66) in favor of the SPT group. Following 8 weeks of training, similar improvements in speed, agility and balance were observed in the IPT and SPT groups. However, the performance of IPT appears to be less effective for increasing CMJ height compared to SPT. It is thus recommended that coaches use SPT if the goal is to improve jump performance.


Assuntos
Desempenho Atlético/fisiologia , Exercício Pliométrico/métodos , Futebol/fisiologia , Adolescente , Teste de Esforço/métodos , Humanos , Masculino , Força Muscular/fisiologia
6.
Int J Sports Med ; 36(1): 75-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25264860

RESUMO

This study investigated sex-specific effects of surface instability on kinetics and lower extremity kinematics during drop jumping and landing. Ground reaction forces as well as knee valgus and flexion angles were tested in 14 males (age: 23±2 years) and 14 females (age: 24±3 years) when jumping and landing on stable and unstable surfaces. Jump height was found to be significantly lower (9%, p<0.001) when drop jumps were performed on unstable vs. stable surface. Significantly higher peak ground reaction forces were observed when jumping was performed on unstable versus stable surfaces (5%, p=0.022). Regarding frontal plane kinematics during jumping and landing, knee valgus angles were higher on unstable compared to stable surfaces (19-32%, p<0.05). Additionally, at the onset of ground contact during landings, females showed higher knee valgus angles than males (222%, p=0.027). Sagittal plane kinematics indicated significantly smaller knee flexion angles (6-35%, p<0.05) when jumping and landing on unstable vs. stable surfaces. During drop jumps and landings, women showed smaller knee flexion angles at ground contact compared to men (27-33%, p<0.05). These findings imply that knee motion strategies were modified by surface instability and sex during drop jumps and landings.


Assuntos
Planejamento Ambiental , Extremidade Inferior/fisiologia , Exercício Pliométrico , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho/fisiologia , Masculino , Movimento , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...