Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 614(7946): 153-159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697829

RESUMO

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.


Assuntos
Proteínas Fúngicas , Mitocôndrias , Proteínas Mitocondriais , Transporte Proteico , Proteoma , Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , Respiração Celular , Ribossomos , Conjuntos de Dados como Assunto
2.
Cell Rep ; 39(1): 110619, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385740

RESUMO

The presequence translocase (TIM23 complex) imports precursor proteins into the mitochondrial inner membrane and matrix. The presequence translocase-associated motor (PAM) provides a driving force for transport into the matrix. The J-protein Pam18 stimulates the ATPase activity of the mitochondrial Hsp70 (mtHsp70). Pam16 recruits Pam18 to the TIM23 complex to ensure protein import. The Pam16-Pam18 module also associates with components of the respiratory chain, but the function of the dual localization of Pam16-Pam18 is largely unknown. Here, we show that disruption of the Pam16-Pam18 heterodimer causes redistribution of Pam18 to the respiratory chain supercomplexes, where it forms a homodimer. Redistribution of Pam18 decreases protein import into mitochondria but stimulates mtHsp70-dependent assembly of respiratory chain complexes. We conclude that coupling to Pam16 differentially controls the dual function of Pam18. It recruits Pam18 to the TIM23 complex to promote protein import but attenuates the Pam18 function in the assembly of respiratory chain complexes.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Transporte de Elétrons , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 591(7850): 471-476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627869

RESUMO

The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.


Assuntos
Dictyostelium/citologia , Dictyostelium/metabolismo , Privação de Alimentos/fisiologia , Nutrientes/metabolismo , Enxofre/metabolismo , Aminoácidos Essenciais/metabolismo , Aminoácidos Essenciais/farmacologia , Antioxidantes/metabolismo , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Cisteína/química , Cisteína/metabolismo , Cisteína/farmacologia , Dictyostelium/efeitos dos fármacos , Glutationa/química , Glutationa/metabolismo , Glutationa/farmacologia , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Methods Cell Biol ; 155: 45-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183973

RESUMO

Mitochondria are deeply integrated into crucial functions of eukaryotic cells, including ATP production via oxidative phosphorylation, biosynthesis of iron-sulfur clusters, amino acids, lipids and heme, signaling pathways, and programmed cell death. The import of about 1000 different proteins that are produced as precursors on cytosolic ribosomes is essential for mitochondrial functions and biogenesis. The translocase of the outer mitochondrial membrane (TOM) forms the entry gate for the vast majority of mitochondrial proteins. Research of the last years has uncovered a complicated network of protein translocases and pathways that sort proteins into the mitochondrial subcompartments: outer and inner membranes, intermembrane space, and matrix. The in vitro import of a large number of different precursor proteins into mitochondria has been a pivotal experimental assay to identify these protein-sorting routes. This experimental set-up enables studies on the kinetics of protein transport into isolated mitochondria, on the processing of precursor proteins, and on their assembly into functional protein machineries. In vitro protein import assays are widely used and are indispensable for research on mitochondrial protein biogenesis.


Assuntos
Técnicas Citológicas/métodos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Sistema Livre de Células , Reagentes de Ligações Cruzadas/química , Dissulfetos/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Coelhos , Saccharomyces cerevisiae/metabolismo , Solubilidade
5.
Nature ; 569(7758): 679-683, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118508

RESUMO

Mitochondrial biogenesis and functions depend on the import of precursor proteins via the 'translocase of the outer membrane' (TOM complex). Defects in protein import lead to an accumulation of mitochondrial precursor proteins that induces a range of cellular stress responses. However, constitutive quality-control mechanisms that clear trapped precursor proteins from the TOM channel under non-stress conditions have remained unknown. Here we report that in Saccharomyces cerevisiae Ubx2, which functions in endoplasmic reticulum-associated degradation, is crucial for this quality-control process. A pool of Ubx2 binds to the TOM complex to recruit the AAA ATPase Cdc48 for removal of arrested precursor proteins from the TOM channel. This mitochondrial protein translocation-associated degradation (mitoTAD) pathway continuously monitors the TOM complex under non-stress conditions to prevent clogging of the TOM channel with precursor proteins. The mitoTAD pathway ensures that mitochondria maintain their full protein-import capacity, and protects cells against proteotoxic stress induced by impaired transport of proteins into mitochondria.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteólise , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/metabolismo
6.
Cell Rep ; 25(8): 2036-2043.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463002

RESUMO

Mitochondria possess elaborate machineries for the import of proteins from the cytosol. Cytosolic factors like Hsp70 chaperones and their co-chaperones, the J-proteins, guide proteins to the mitochondrial surface. The translocase of the mitochondrial outer membrane (TOM) forms the entry gate for preproteins. How the proteins are delivered to mitochondrial preprotein receptors is poorly understood. We identify the cytosolic J-protein Xdj1 as a specific interaction partner of the central receptor Tom22. Tom22 recruits Xdj1 to the mitochondrial surface to promote import of preproteins and assembly of the TOM complex. Additionally, we find that the receptor Tom70 binds a different cytosolic J-protein, Djp1. Our findings suggest that cytosolic J-proteins target distinct TOM receptors and promote the biogenesis of mitochondrial proteins.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
7.
Genes Dev ; 32(19-20): 1285-1296, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275044

RESUMO

Mitochondria contain their own genome that encodes for a small number of proteins, while the vast majority of mitochondrial proteins is produced on cytosolic ribosomes. The formation of respiratory chain complexes depends on the coordinated biogenesis of mitochondrially encoded and nuclear-encoded subunits. In this review, we describe pathways that adjust mitochondrial protein synthesis and import of nuclear-encoded subunits to the assembly of respiratory chain complexes. Furthermore, we outline how defects in protein import into mitochondria affect nuclear gene expression to maintain protein homeostasis under physiological and stress conditions.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Transporte de Elétrons , Regulação da Expressão Gênica , Genoma Mitocondrial , Humanos , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Transporte Proteico , Estresse Fisiológico , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...