Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 8: 3603-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124360

RESUMO

Nano-scale particles sized 10-400 nm administered systemically preferentially extravasate from tumor vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor vascularization limits particle transport and also results in avascular hypoxic regions with non-proliferating cells, which can regenerate tissue after nanoparticle-delivered cytotoxicity or thermal ablation. Nanoparticle surface modifications provide for increasing tumor targeting and uptake while decreasing immunogenicity and toxicity. Herein, we created novel two layer gold-nanoshell particles coated with alkanethiol and phosphatidylcholine, and three layer nanoshells additionally coated with high-density-lipoprotein. We hypothesize that these particles have enhanced penetration into 3-dimensional cell cultures modeling avascular tissue when compared to standard poly(ethylene glycol) (PEG)-coated nanoshells. Particle uptake and distribution in liver, lung, and pancreatic tumor cell cultures were evaluated using silver-enhancement staining and hyperspectral imaging with dark field microscopy. Two layer nanoshells exhibited significantly higher uptake compared to PEGylated nanoshells. This multilayer formulation may help overcome transport barriers presented by tumor vasculature, and could be further investigated in vivo as a platform for targeted cancer therapies.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Neoplasias Experimentais/química , Neovascularização Patológica/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Difusão , Humanos , Distribuição Tecidual
2.
Chempluschem ; 78(9): 1033-1039, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31986726

RESUMO

In this multidisciplinary study the chemical reduction synthesis of novel gold clusters in solution was combined with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state, and ligand substitution influences their gas-phase fragmentation pathways. Ultrasmall cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (dcpp) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented by employing collision-induced dissociation (CID) and the product ions were analyzed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9 L4 3+ , Au13 L5 3+ , Au6 L3 2+ , Au8 L3 2+ , and Au10 L4 2+ (L=dcpp). The gas-phase fragmentation pathways of these cluster ions were examined systematically by employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (dppp) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6 H11 versus C6 H5 ) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size, and stability of diphosphine-ligated gold clusters synthesized in solution.

3.
ACS Nano ; 6(1): 573-82, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22136556

RESUMO

Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au(11)L(5)(3+), L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies. Using in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is demonstrated that the Au(11)L(5)(3+) cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-perfluorodecanethiol self-assembled monolayer (FSAM) on gold. In contrast, when deposited onto 16-mercaptohexadecanoic acid (COOH-SAM) and 1-dodecanethiol (HSAM) surfaces on gold, the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the FSAM and HSAM surfaces are investigated using in situ Fourier transform ion cyclotron resonance (FT-ICR) SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the FSAM surface while an almost instantaneous neutralization takes place on the surface of the HSAM. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto carefully selected substrates.


Assuntos
Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Íons , Teste de Materiais , Tamanho da Partícula , Eletricidade Estática
4.
Anal Chem ; 83(21): 8069-72, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21970542

RESUMO

Preparation of clean monodisperse samples of clusters and nanoparticles for characterization using cutting-edge analytical techniques is essential to understanding their size-dependent properties. Herein, we report a general method for the preparation of high surface coverage samples of monodisperse clusters containing an exact number of atoms. Polydisperse solutions of diphosphine-capped gold clusters were produced by reduction synthesis. Electrospray ionization was used to introduce the clusters into the gas phase where they were filtered by mass-to-charge ratio allowing clusters of a selected size to be deposited onto carbon coated copper grids at well controlled kinetic energies. Scanning transmission electron microscopy (STEM) analysis of the soft landed clusters confirms their monodispersity and high coverage on the substrate. The soft landing approach may be extended to other materials compatible with an array of available ionization techniques and, therefore, has widespread utility as a means for controlled preparation of monodisperse samples of nanoparticles and clusters for analysis by transmission electron microscopy (TEM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...