Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38978583

RESUMO

The rapid onset of innate immune defenses is critical for early control of viral replication in an infected host, yet it can also lead to irreversible tissue damage, especially in the respiratory tract. Intricate regulatory mechanisms must exist that modulate inflammation, while controlling the infection. Here, B cells expressing choline acetyl transferase (ChAT), an enzyme required for production of the metabolite and neurotransmitter acetylcholine (ACh) are identified as such regulators of the immediate early response to influenza A virus. Lung tissue ChAT + B cells are shown to interact with a7 nicotinic Ach receptor-expressing lung interstitial macrophages in mice within 24h of infection to control their production of TNFa, shifting the balance towards reduced inflammation at the cost of enhanced viral replication. Thus, innate-stimulated B cells are key participants of an immediate-early regulatory cascade that controls lung tissue damage after viral infection.

2.
mBio ; 10(5)2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506312

RESUMO

All metazoans produce antimicrobial peptides (AMPs) that have both broad antimicrobial and immunomodulatory activity. Cathelicidins are AMPs that preferentially kill Gram-negative bacteria in vitro, purportedly by assembling into higher-order structures that perforate the membrane. We utilized high-resolution, single-cell fluorescence microscopy to examine their mechanism of action in real time. Engineered cathelicidins rapidly bound to Gram-negative and Gram-positive cells and penetrated the cytoplasmic membrane. Rapid failure of the peptidoglycan superstructure in regions of active turnover caused leakage of cytoplasmic contents and the formation of membrane-bound blebs. A mutation anticipated to destabilize interactions between cathelicidin subunits had no effect on bactericidal activity, suggesting that cathelicidins have activities beyond perforating the membrane. Nanomolar concentrations of cathelicidins, although not bactericidal, reduced the growth rate of Gram-negative and Gram-positive bacteria. The cells exhibited expression changes in multiple essential processes, including protein synthesis, peptidoglycan biosynthesis, respiration, and the detoxification of reactive oxygen species (ROS). Time-lapse imaging revealed that ROS accumulation preceded bleb formation, and treatments that reduced cellular ROS levels overcame these bactericidal effects. We propose that that the primary effect of cathelicidins is to induce the production of ROS that damage bacterial molecules, leading to slowed growth or cell death. Given their low circulating levels in vivo, AMPs may serve to slow bacterial population expansion so that cellular immunity systems can respond to and battle the infection.IMPORTANCE Antimicrobial peptides (AMPs) are an important part of the mammalian innate immune system in the battle against microbial infection. How AMPs function to control bacteria is not clear, as nearly all activity studies use nonphysiological levels of AMPs. We monitored peptide action in live bacterial cells over short time frames with single-cell resolution and found that the primary effect of cathelicidin peptides is to increase the production of oxidative molecules that cause cellular damage in Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Catelicidinas/farmacologia , Membrana Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Catelicidinas/genética , Morte Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...