RESUMO
This study explores how water content modulates the self-assembly and fluorescence behavior of a novel calixarene, C1. C1 forms large, flattened structures in pure THF, but water addition triggers a transition to smaller, unimodal clusters. A critical micellar concentration (CMC) is identified, decreasing with increasing water content. Fluorescence quenching is observed upon water addition, attributed to nonradiative deactivation. These findings highlight water as a key regulator of C1's assembly and fluorescence, paving the way for further development of water-responsive calixarene systems.
RESUMO
Amino-acid-based surfactants are a group of compounds that resemble natural amphiphiles and thus are expected to have a low impact on the environment, owing to either the mode of surfactant production or its means of disposal. Within this context, arginine-based tensioactives have gained particular interest, since their cationic nature-in combination with their amphiphilic character-enables them to act as broad-spectrum biocides. This capability is based mainly on their interactive affinity for the microbial envelope that alters the latter's structure and ultimately its function. In the work reported here, we investigated the efficiency of Nα-benzoyl arginine decyl- and dodecylamide against Candida spp. to further our understanding of the antifungal mechanism involved. For the assays, both a Candida albicans and a Candida tropicalis clinical isolates along with a C. albicans-collection strain were used as references. As expected, both arginine-based compounds proved to be effective against the strains tested through inhibiting both the planktonic and the sessile growth. Furthermore, atomic force microscopy techniques and lipid monolayer experiments enabled us to gain insight into the effect of the surfactant on the cellular envelope. The results demonstrated that all the yeasts treated exhibited changes in their exomorphologic structure, with respect to alterations in both roughness and stiffness, relative to the nontreated ones. This finding-in addition to the amphiphiles' proven ability to insert themselves within this model fungal membrane-could explain the changes in the yeast-membrane permeability that could be linked to viability loss and mixed-vesicle release.
Assuntos
Candida , Tensoativos , Tensoativos/farmacologia , Arginina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans , Biofilmes , Testes de Sensibilidade MicrobianaRESUMO
Here we report the use of graphene quantum dots (GQDs), obtained from 3D graphene foam, functionalized with 8-hydroxyquinoline (8-HQ) for the sensitive and selective detection of Hg2+ via front-face fluorescence. The great surface area and active groups within the GQDs permitted the functionalization with 8-HQ to increase their selectivity toward the analyte of interest. The fluorescence probe follows the Stern-Volmer model, yielding a direct relationship between the degree of quenching and the concentration of the analyte. Diverse parameters, including the pH and the use of masking agents, were optimized in order to improve the selectivity toward Hg2+ down to a limit of detection of 2.4 nmol L-1. It is hereby demonstrated that the functionalized GQDs work perfectly fine under adverse conditions such as acidic pH and in the presence of a large number of cationic and anionic interferences for the detection of Hg2+ in real samples. Parallel measurements using cold vapor atomic fluorescence spectrometry also demonstrated an excellent correlation with the front-face fluorescence method applied here for real samples including tap, river, underground, and dam waters.
Assuntos
Grafite , Mercúrio , Pontos Quânticos , Pontos Quânticos/química , Grafite/química , Mercúrio/análise , Espectrometria de Fluorescência/métodos , OxiquinolinaRESUMO
Gastropod Molluscs rely exclusively on the innate immune system to protect from pathogens, defending their embryos through maternally transferred effectors. In this regard, Pomacea snail eggs, in addition to immune defenses, have evolved the perivitellin-2 or PV2 combining two immune proteins into a neurotoxin: a lectin and a pore-forming protein from the Membrane Attack Complex/Perforin (MACPF) family. This binary structure resembles AB-toxins, a group of toxins otherwise restricted to bacteria and plants. Many of these are enterotoxins, leading us to explore this activity in PV2. Enterotoxins found in bacteria and plants act mainly as pore-forming toxins and toxic lectins, respectively. In animals, although both pore-forming proteins and lectins are ubiquitous, no enterotoxins have been reported. Considering that Pomacea snail eggs ingestion induce morpho-physiological changes in the intestinal mucosa of rodents and is cytotoxic to intestinal cells in culture, we seek for the factor causing these effects and identified PmPV2 from Pomacea maculata eggs. We characterized the enterotoxic activity of PmPV2 through in vitro and in vivo assays. We determined that it withstands the gastrointestinal environment and resisted a wide pH range and enzymatic proteolysis. After binding to Caco-2 cells it promoted changes in surface morphology and an increase in membrane roughness. It was also cytotoxic to both epithelial and immune cells from the digestive system of mammals. It induced enterocyte death by a lytic mechanism and disrupted enterocyte monolayers in a dose-dependent manner. Further, after oral administration to mice PmPV2 attached to enterocytes and induced large dose-dependent morphological changes on their small intestine mucosa, reducing the absorptive surface. Additionally, PmPV2 was detected in the Peyer's patches where it activated lymphoid follicles and triggered apoptosis. We also provide evidence that the toxin can traverse the intestinal barrier and induce oral adaptive immunity with evidence of circulating antibody response. As a whole, these results indicate that PmPV2 is a true enterotoxin, a role that has never been reported to lectins or perforin in animals. This extends by convergent evolution the presence of plant- and bacteria-like enterotoxins to animals, thus expanding the diversity of functions of MACPF proteins in nature.
Assuntos
Enterotoxinas/farmacologia , Imunidade Inata/imunologia , Mucosa Intestinal/efeitos dos fármacos , Venenos de Moluscos/farmacologia , Caramujos/imunologia , Animais , Complexo de Ataque à Membrana do Sistema Complemento , Camundongos , Óvulo/imunologia , Óvulo/metabolismo , Perforina/metabolismoRESUMO
The reason that determines the pathological deposition of human apolipoprotein A-I variants inducing organ failure has been under research since the early description of natural mutations in patients. To shed light into the events associated with protein aggregation, we studied the structural perturbations that may occur in the natural variant that shows a substitution of a Leucine by an Arginine in position 60 (L60R). Circular dichroism, intrinsic fluorescence measurements, and proteolysis analysis indicated that L60R was more unstable, more sensitive to cleavage and the N-terminus was more disorganized than the protein with the native sequence (Wt). A higher tendency to aggregate was also detected when L60R was incubated at physiological pH. In addition, the small structural rearrangement observed for the freshly folded variant led to the release of tumor necrosis factor-α and interleukin-1ß from a model of macrophages. However, the mutant preserved both its dimeric conformation and its lipid-binding capacity. Our results strongly suggest that the chronic disease may be a consequence of the native conformation loss which elicits the release of protein conformations that could be either cytotoxic or precursors of amyloid conformations.
Assuntos
Proteínas Amiloidogênicas/metabolismo , Apolipoproteína A-I/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Amiloidose/etiologia , Amiloidose/genética , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Humanos , Mutação Puntual , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de ProteínaRESUMO
BACKGROUND: Different protein conformations may be involved in the development of clinical manifestations associated with human amyloidosis. Although a fibrillar conformation is usually the signature of damage in the tissues of patients, it is not clear whether this species is per se the cause or the consequence of the disease. Hereditary amyloidosis due to variants of apolipoprotein A-I (apoA-I) with a substitution of a single amino acid is characterized by the presence of fibrillar protein within the lesions. Thus mutations result in increased protein aggregation. Here we set up to characterize the folding of a natural variant with a mutation leading to a deletion at position 107 (apoA-I Lys107-0). Patients carrying this variant show amyloidosis and severe atherosclerosis. METHODS: We oxidized this variant under controlled concentrations of hydrogen peroxide and analyzed the structure obtained after 30-day incubation by fluorescence, circular dichroism and microscopy approaches. Neutrophils activation was characterized by confocal microscopy. RESULTS: We obtained a high yield of well-defined stable fibrillar structures of apoA-I Lys107-0. In an in vitro neutrophils system, we were able to detect the induction of Neutrophils Extracellular Traps (NETs) when we incubated with oxidized apoA-I variants. This effect was exacerbated by the fibrillar structure of oxidized Lys 107-0. CONCLUSIONS: We conclude that a pro-inflammatory microenvironment could result in the formation of aggregation-prone species, which, in addition may induce a positive feed-back in the activation of an inflammatory response. GENERAL SIGNIFICANCE: These events may explain a close association between amyloidosis due to apoA-I Lys107-0 and atherosclerosis.
Assuntos
Amiloidose Familiar/genética , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Aterosclerose/genética , Mutação , Amiloidose Familiar/metabolismo , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Humanos , Conformação ProteicaRESUMO
Celiac disease (CeD) is a highly prevalent chronic immune-mediated enteropathy developed in genetically predisposed individuals after ingestion of a group of wheat proteins (called gliadins and glutenins). The 13mer α-gliadin peptide, p31-43, induces proinflammatory responses, observed by in vitro assays and animal models, that may contribute to innate immune mechanisms of CeD pathogenesis. Since a cellular receptor for p31-43 has not been identified, this raises the question of whether this peptide could mediate different biological effects. In this work, we aimed to characterize the p31-43 secondary structure by different biophysical and in silico techniques. By dynamic light scattering and using an oligomer/fibril-sensitive fluorescent probe, we showed the presence of oligomers of this peptide in solution. Furthermore, atomic force microscopy analysis showed p31-43 oligomers with different height distribution. Also, peptide concentration had a very strong influence on peptide self-organization process. Oligomers gradually increased their size at lower concentration. Whereas, at higher ones, oligomers increased their complexity, forming branched structures. By CD, we observed that p31-43 self-organized in a polyproline II conformation in equilibrium with ß-sheets-like structures, whose pH remained stable in the range of 3-8. In addition, these findings were supported by molecular dynamics simulation. The formation of p31-43 nanostructures with increased ß-sheet structure may help to explain the molecular etiopathogenesis in the induction of proinflammatory effects and subsequent damage at the intestinal mucosa in CeD.
Assuntos
Doença Celíaca/tratamento farmacológico , Gliadina/farmacologia , Imunidade Inata/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Células CACO-2 , Doença Celíaca/genética , Doença Celíaca/imunologia , Doença Celíaca/patologia , Gliadina/genética , Gliadina/imunologia , Gliadina/ultraestrutura , Humanos , Imunidade Inata/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Microscopia de Força Atômica , Conformação Molecular/efeitos dos fármacos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/ultraestrutura , Peptídeos/química , Peptídeos/imunologia , Peptídeos/farmacologia , Conformação Proteica em Folha beta , Soluções/química , Água/químicaRESUMO
Resumen Introducción. Una cuarta parte de los suelos agrícolas del mundo padece algún grado de deterioro, especialmente por factores antrópicos, no obstante, reducir el daño es posible cuando se desarrollan prácticas adecuadas de producción. Objetivo. Evaluar la efectividad de prácticas agroecológicas de conservación de suelos de ladera en el municipio de Guasca - Cundinamarca. Materiales y métodos. Se establecieron cuatro tratamientos: barreras vivas, barreras muertas, zanjas de infiltración, terrazas y un testigo, por cada tratamiento se realizaron 4 repeticiones, para un total de 20 unidades experimentales (UE). Se establecieron cultivos asociados de arveja (Pisum sativum), fríjol (Phaseolus vulgaris) y zanahoria (Daucus carota), en surcos en contrapendiente, obteniendo 6 surcos por UE. En cada UE se instaló una zanja recubierta con polietileno, con el objetivo de conducir el volumen de agua escurrido y los sólidos arrastrados al recipiente colector final. Del volumen obtenido, después de una respectiva homogenización con un agitador manual, se obtuvieron muestras de 200 ml para posteriormente secarlas y pesarlas en laboratorio. Resultados. Las pérdidas de suelo y agua por escorrentía presentaron un comportamiento variable, lo que puede ser atribuido a la interacción entre la intensidad y frecuencia de las precipitaciones, textura de suelo, manejo histórico del suelo y la variedad de prácticas de conservación empleadas. Conclusión. Todas las prácticas de conservación de suelos implementadas contribuyeron a reducir la pérdida de sedimentos, siendo las zanjas de infiltración la mejor práctica de conservación, presentando una reducción del 87,8 % de las pérdidas frente al testigo.
Abstract Introduction. A quarter of the world's agricultural soils suffer some degree of deterioration, especially due to anthropic factors. However, regeneration of soils is possible when conservation strategies are developed. Objective. Evaluate the effectiveness of soil conservation agroecological practices in the retention of hillside soils in the municipality of Guasca-Cundinamarca. Materials and methods. Four treatments were established: live barriers, dead barriers, infiltration ditches, terraces and a control. For each treatment, four repetitions were performed, for a total of 20 experimental units (EU). Pea (Pisum sativum), bean (Phaseolus vulgaris) and carrot (Daucus carota) crops were established in furrows in counter-slope, obtaining 6 furrows per EU. In each EU a ditch covered with polyethylene was installed, with the aim of driving the volume of drained water and the solids dragged towards a final collector vessel. From the volume obtained, after a respective homogenization with a manual agitator, samples of 200 ml were obtained for subsequent drying and weighing in the laboratory. Results. The losses of soil and water by runoff presented a variable behavior, which can be attributed to the interaction among factors such as intensity and frequency of rainfall, soil texture, historical soil management and the variety of conservation practices used. Conclusion. All the soil conservation practices implemented contributed to reduce the loss of sediments, infiltration ditches being the best conservation practice, presenting an 87.8 % reduction in losses compared with the control.
Resumo Introdução. Uma quarta parte dos solos agrícolas do mundo padece algum grau de deterioro, especialmente por fatores antrópicos, não obstante, reduzir o dano é possível quando se desenvolvem práticas adequadas de produção. Objetivo. Avaliar a efetividade das práticas agroecológicas de conservação dos solos de ladeira no município de Guasca - Cundinamarca. Materiais e métodos. Estabeleceram-se quatro tratamentos: barreiras vivas, barreiras mortas, trincheiras de infiltração, terraços e um controle, por cada tratamento realizaram-se 4 repetições, para um total de 20 unidades experimentais (UE). Estabeleceram-se culturas associadas de ervilha (Pisum sativum), feijão (Phaseolus vulgaris) e cenoura (Daucus carota), em sulcos em contra pendente, obtendo 6 sulcos por UE. Em cada UE instalou-se uma trincheira recoberta com polietileno, com o objetivo de conduzir o volume de água escorrido e os sólidos arrastrados ao recipiente coletor final. Do volume obtido, despois de uma respetiva homogeneização com um agitador manual, obtiveram-se amostras de 200 ml para posteriormente serem secadas e pesadas no laboratório. Resultados. As perdas do solo e água pelo escorrimento apresentaram um comportamento variável, o que pode ser atribuído à interação entre a intensidade e a frequência das precipitações, textura de solo, manejo histórico do solo e a variedade das práticas de conservação empregadas. Conclusão. Todas as práticas de conservação de solos implementadas contribuíram a reduzir a perda de sedimentos, sendo as trincheiras de infiltração a melhor prática de conservação, apresentando uma redução do 87,8 % das perdas frente ao controle.
RESUMO
Celiac disease (CD) is a chronic enteropathy elicited by a Th1 response to gluten peptides in the small intestine of genetically susceptible individuals. However, it remains unclear what drives the induction of inflammatory responses of this kind against harmless antigens in food. In a recent work, we have shown that the p31-43 peptide (p31-43) from α-gliadin can induce an innate immune response in the intestine and that this may initiate pathological adaptive immunity. The receptors and mechanisms responsible for the induction of innate immunity by p31-43 are unknown and here we present evidence that this may reflect conformational changes in the peptide that allow it to activate the NLRP3 inflammasome. Administration of p31-43, but not scrambled or inverted peptides, to normal mice induced enteropathy in the proximal small intestine, associated with increased production of type I interferon and mature IL-1ß. P31-43 showed a sequence-specific spontaneous ability to form structured oligomers and aggregates in vitro and induced activation of the ASC speck complex. In parallel, the enteropathy induced by p31-43 in vivo did not occur in the absence of NLRP3 or caspase 1 and was inhibited by administration of the caspase 1 inhibitor Ac-YVAD-cmk. Collectively, these findings show that p31-43 gliadin has an intrinsic propensity to form oligomers which trigger the NLRP3 inflammasome and that this pathway is required for intestinal inflammation and pathology when p31-43 is administered orally to mice. This innate activation of the inflammasome may have important implications in the initial stages of CD pathogenesis.
Assuntos
Caspase 1/metabolismo , Gliadina/metabolismo , Inflamassomos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Sequência de Aminoácidos , Animais , Apoptose , Doença Celíaca/etiologia , Doença Celíaca/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Gliadina/química , Gliadina/ultraestrutura , Mucosa Intestinal/ultraestrutura , Intestino Delgado , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
Xanthan is a virulence factor produced by Xanthomonas spp. We previously demonstrated that this exopolysaccharide is not only essential for pathogenicity by contributing with bacterial survival but also its pyruvate substituents interfere with some plant defense responses. Deepening our studies about xanthan properties and structure, the aim of this work was to analyze the characteristics of xanthan produced by Xanthomonas in different culture media. We analyzed the xanthan produced by Xanthomonas citri subsp. citri (Xcc) in leaf extracts from grapefruit (a susceptible host of this bacterium) and compared it with the xanthan produced in a synthetic culture medium. We found that the xanthan produced in the grapefruit extract (Xan-GLE) presented shorter and more disordered molecules than xanthan produced in the synthetic medium (Xan-PYM). Besides, Xan-GLE resulted less viscous than Xan-PYM. The disordered molecular conformation of Xan-GLE could be attributed to its higher pyruvilation degree and lower acetylation degree compared with those detected in Xan-PYM. Meanwhile, the difference in the viscosity of both xanthans could be due to their molecules length. Finally, we cultured Xcc in the presence of the Xan-GLE or Xan-PYM and observed the formation of biofilm-like structures in both cases. We found significant differences in biofilm architecture between the two conditions, being the biofilm produced in presence of Xan-GLE similar to that formed in canker lesions developed in lemon plant leaves. Together, these results show how xanthan structure and properties changed when Xcc grew in a natural substrate and can contribute to better understand the biological role of xanthan.
Assuntos
Citrus paradisi/química , Doenças das Plantas/microbiologia , Folhas de Planta/química , Polissacarídeos Bacterianos/química , Biofilmes/crescimento & desenvolvimento , Citrus paradisi/microbiologia , Folhas de Planta/microbiologia , Polissacarídeos Bacterianos/biossíntese , Xanthomonas/química , Xanthomonas/genéticaRESUMO
The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana.
Assuntos
Alcanos/metabolismo , Beauveria/crescimento & desenvolvimento , Beauveria/patogenicidade , Entomophthorales/crescimento & desenvolvimento , Entomophthorales/patogenicidade , Estresse Oxidativo , Animais , Beauveria/metabolismo , Membrana Celular/ultraestrutura , Proliferação de Células , Entomophthorales/metabolismo , Hifas/metabolismo , Insetos/microbiologia , Larva/microbiologia , Peroxissomos/fisiologia , Esporos Fúngicos/metabolismo , VirulênciaRESUMO
In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells. In addition, we analyzed the glycerolipid composition by gas-liquid chromatography. GPAT2 expression altered the arachidonic acid content in glycerolipids, and the lack of GPAT2 seems to be partially compensated by the overexpression of another arachidonic-acid-metabolizing enzyme, AGPAT11. GPAT2 expressing cells exhibited a rougher topography and less membrane damage than GPAT2 silenced cells. Pore-like structures were present only in GPAT2 subexpressing cells, correlating with higher membrane damage evidenced by lactate dehydrogenase release. These GPAT2-induced changes are consistent with its proposed function as a tumor-promoting gene, and might be used as a phenotypic differentiation marker. AFM provides the basis for the identification and quantification of those changes, and demonstrates the utility of this technique in the study of cancer cell biology.
Assuntos
Neoplasias da Mama/patologia , Permeabilidade da Membrana Celular , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Microscopia de Força Atômica/métodos , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Humanos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses.
Assuntos
Proteínas Amiloidogênicas/química , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Heparina/metabolismo , Mutação Puntual , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Apolipoproteína A-I/genética , Arginina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Fosfolipídeos/metabolismo , Prolina/metabolismo , Agregados Proteicos , Ligação Proteica , Estabilidade Proteica , Dodecilsulfato de Sódio/metabolismoRESUMO
Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms. Now, we expanded our studies to a cell model over-expressing both Δ5 and Δ6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein A-I-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the cell functionality is preserved by regulating PM organization and Chol exportation and homeostasis.
Assuntos
Ácidos Graxos Dessaturases/metabolismo , Homeostase , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Animais , Sequência de Bases , Células CHO , Linhagem Celular , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetinae , Cricetulus , Primers do DNA , Humanos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Discoidal high-density lipoproteins (D-HDL) are critical intermediates in reverse cholesterol transport. Most of the present knowledge of D-HDL is based on studies with reconstituted lipoprotein complexes of apolipoprotein A-I (apoA-I) obtained by cholate dialysis (CD). D-HDL can also be generated by the direct microsolubilization (DM) of phospholipid vesicles at the gel/fluid phase transition temperature, a process mechanistically similar to the "in vivo" apoAI lipidation via ABCA1. We compared the apoA-I configuration in D-HDL reconstituted with dimyristoylphosphatidylcholine by both procedures using fluorescence resonance energy transfer measurements with apoA-I tryptophan mutants and fluorescently labeled cysteine mutants. Results indicate that apoA-I configuration in D-HDL depends on the reconstitution process and are consistent with a "double belt" molecular arrangement with different helix registry. As reported by others, a configuration with juxtaposition of helices 5 of each apoAI monomer (5/5 registry) predominates in D-HDL obtained by CD. However, a configuration with helix 5 of one monomer juxtaposed with helix 2 of the other (5/2 registry) would predominate in D-HDL generated by DM. Moreover, we also show that the kinetics of cholesterol efflux from macrophage cultures depends on the reconstitution process, suggesting that apoAI configuration is important for this HDL function.
Assuntos
Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Substituição de Aminoácidos , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Linhagem Celular , Colesterol/química , Colesterol/genética , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de ProteínaRESUMO
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins. This protein has key functions in lipoprotein metabolism and its plasma concentration is inversely correlated with the incidence of atherosclerosis and cardiovascular diseases. There is an increasing need to develop methods for efficient production of recombinant apoA-I for using it in basic research or pharmacological therapy. An apoA-I variant lacking two amino acid residues at the N-terminus can be easily produced by bacterial expression. We report here the characterization of this variant comparing its properties with those of the protein isolated from human serum. The results validate the use of this variant in future assays and investigations.
Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Apolipoproteína A-I/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Guanidina , Humanos , Desnaturação Proteica , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Reprodutibilidade dos Testes , TermodinâmicaRESUMO
Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe atherosclerosis. Results showed that both variants share common structural properties including decreased stability compared to Wt apoA-I and a more flexible structure that gives rise to formation of partially folded states. Interestingly, however, distinct features appear to determine their pathogenic mechanisms. ApoA-ILys107-0 has an increased propensity to aggregate at physiological pH and in a pro-inflammatory microenvironment than Wt apoA-I, whereas apoA-IGly26Arg elicited macrophage activation, thus stimulating local chronic inflammation. Our results strongly suggest that some natural mutations in apoA-I variants elicit protein tendency to aggregate, but in addition the specific interaction of different variants with macrophages may contribute to cellular stress and toxicity in hereditary amyloidosis.
Assuntos
Substituição de Aminoácidos , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Animais , Linhagem Celular , Humanos , Macrófagos/metabolismo , Camundongos , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de ProteínaRESUMO
Amyloidoses constitute a group of diseases in which soluble proteins aggregate and deposit extracellularly in tissues. Nonhereditary apolipoprotein A-I (apoA-I) amyloid is characterized by deposits of nonvariant protein in atherosclerotic arteries. Despite being common, little is known about the pathogenesis and significance of apoA-I deposition. In this work we investigated by fluorescence and biochemical approaches the impact of a cellular microenvironment associated with chronic inflammation on the folding and pro-amyloidogenic processing of apoA-I. Results showed that mildly acidic pH promotes misfolding, aggregation, and increased binding of apoA-I to extracellular matrix elements, thus favoring protein deposition as amyloid like-complexes. In addition, activated neutrophils and oxidative/proteolytic cleavage of the protein give rise to pro amyloidogenic products. We conclude that, even though apoA-I is not inherently amyloidogenic, it may produce non hereditary amyloidosis as a consequence of the pro-inflammatory microenvironment associated to atherogenesis.
Assuntos
Amiloide/metabolismo , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/ultraestrutura , Benzotiazóis , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Heparina/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Ácido Hipocloroso/farmacologia , Metaloproteinase 12 da Matriz/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteólise/efeitos dos fármacos , Solventes , Acetato de Tetradecanoilforbol/farmacologia , Tiazóis/metabolismo , Triptofano/metabolismoRESUMO
Apolipoprotein A-I (apoAI) contains several amphipathic α-helices. To carry out its function, it exchanges between lipid-free and different lipidated states as bound to membranes or to lipoprotein complexes of different morphology, size, and composition. When bound to membranes or to spherical lipoprotein surfaces, it is thought that most α-helices arrange with their long axis parallel to the membrane surface. However, we previously found that a central region spanning residues 87-112 is exclusively labeled by photoactivable reagents deeply located into the membrane (Córsico et al. (2001) J. Biol. Chem. 276, 16978-16985). A pair of amphipathic α-helical repeats with a particular charge distribution is predicted in this region. In order to study their insertion topology, three single tryptophan mutants, each one containing the tryptophan residue at a selected position in the hydrophobic face of the central Y-helices (W@93, W@104, and W@108), were used. From the accessibility to quenchers located at different membrane depths, distances from the bilayer center of 13.4, 10.5, and 15.7 Å were estimated for positions 93, 104, and 108, respectively. Reported data also indicate that distances between homologous positions (in particular for W@93 and W@104) are very short in dimers in aqueous solution, but they are larger in membrane-bound dimers. Data indicate that an intermolecular central Y-helix bundle would penetrate the membrane perpendicularly to the membrane surface. Intermolecular helix-helix interactions would occur through the hydrophilic helix faces in the membrane-bound bundle but through the hydrophobic faces in the case of dimers in solution.
Assuntos
Apolipoproteína A-I/química , Bicamadas Lipídicas/química , Triptofano/genética , Apolipoproteína A-I/metabolismo , Dimiristoilfosfatidilcolina/química , Polarização de Fluorescência , Humanos , Bicamadas Lipídicas/metabolismo , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Fenilalanina/genética , Fosfatidilcolinas/química , Valor Preditivo dos Testes , Ligação Proteica/genética , Multimerização Proteica/genética , Estrutura Secundária de Proteína , Transporte Proteico/genética , Sequências Repetitivas de Aminoácidos/genética , Espectrometria de FluorescênciaRESUMO
Previous results [J. Biol. Chem. 276 (2001) 16978] indicated that an apolipoprotein A-I (apoAI) central region swings away from lipid contact in discoidal high density lipoproteins (HDL), but it is able to penetrate into the bilayer of lipid vesicles. In this work, we have studied the interaction with lipid membranes of a synthetic peptide with the sequence of apoAI region between residues 77 and 120 (AI 77-120). Like apoAI, AI 77-120 binds to phospholipid vesicles and shows selectivity for cholesterol-containing membranes. Moreover, AI 77-120 promotes cholesterol desorption from membranes in a similar fashion as apoAI and can stimulate cholesterol efflux from Chinese hamster ovary cells. AI 77-120 has a considerable alpha-helical content in water solution, and its secondary structure is not largely modified after binding to membranes. Both apoA-I and AI 77-120 are oligomeric in the lipid-bound state, suggesting that dimerization of the central domain could be required for the membrane binding activity of apoA-I in HDL.