Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(31)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34034248

RESUMO

Epitaxial low temperature grown GaAs (LT-GaAs) on silicon (LT-GaAs/Si) has the potential for terahertz (THz) photoconductive antenna applications. However, crystalline, optical and electrical properties of heteroepitaxial grown LT-GaAs/Si can be very different from those grown on semi-insulating GaAs substrates ('reference'). In this study, we investigate optical properties of an epitaxial grown LT-GaAs/Si sample, compared to a reference grown under the same substrate temperature, and with the same layer thickness. Anti-phase domains and some crystal misorientation are present in the LT-GaAs/Si. From coherent phonon spectroscopy, the intrinsic carrier densities are estimated to be 1015 cm-3for either sample. Strong plasmon damping is also observed. Carrier dynamics, measured by time-resolved THz spectroscopy at high excitation fluence, reveals markedly different responses between samples. Below saturation, both samples exhibit the desired fast response. Under optical fluences ⩾54µJ cm-2, the reference LT-GaAs layer shows saturation of electron trapping states leading to non-exponential behavior, but the LT-GaAs/Si maintains a double exponential decay. The difference is attributed to the formation of As-As and Ga-Ga bonds during the heteroepitaxial growth of LT-GaAs/Si, effectively leading to a much lower density of As-related electron traps.

2.
Sci Rep ; 10(1): 19926, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199727

RESUMO

We present the implementation of an efficient terahertz (THz) photoconductive antenna (PCA) emitter design that utilizes high mobility carriers in the two-dimensional electron gas (2DEG) of a modulation-doped heterostructure (MDH). The PCA design is fabricated with recessed metal electrodes in direct contact with the 2DEG region of the MDH. We compare the performance of the MDH PCA having recessed contacts with a PCA fabricated on bulk semi-insulating GaAs, on low temperature-grown GaAs, and a MDH PCA with the contacts fabricated on the surface. By recessing the contacts, the applied bias can effectively accelerate the high-mobility carriers within the 2DEG, which increases the THz power emission by at least an order of magnitude compared to those with conventional structures. The dynamic range (62 dB) and bandwidth characteristics (3.2 THz) in the power spectrum are shown to be comparable with the reference samples. Drude-Lorentz simulations corroborate the results that the higher-mobility carriers in the MDH, increase the THz emission. The saturation characteristics were also measured via optical fluence dependence, revealing a lower saturation value compared to the reference samples. The high THz conversion efficiency of the MDH-PCA with recessed contacts at low optical power makes it an attractive candidate for THz-time domain spectroscopy systems powered by low power fiber lasers.

3.
Opt Express ; 24(23): 26175-26185, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857354

RESUMO

We present the use of a "double optical pump" technique in terahertz time-domain emission spectroscopy as an alternative method to investigate the lifetime of photo-excited carriers in semiconductors. Compared to the commonly employed optical pump-probe transient photo-reflectance, this non-contact and room temperature characterization technique allows relative ease in achieving optical alignment. The technique was implemented to evaluate the carrier lifetime in low temperature-grown gallium arsenide (LT-GaAs). The carrier lifetime values deduced from "double optical pump" THz emission decay curves show good agreement with data obtained from standard transient photo-reflectance measurements on the same LT-GaAs samples grown at 250 °C and 310 °C.

4.
Opt Express ; 23(11): 14532-40, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072813

RESUMO

We present experimental demonstration of photocarrier dynamics in InAs quantum dots (QDs) via terahertz (THz) time-domain spectroscopy (TDS) using two excitation wavelengths and observing the magnetic field polarity characteristics of the THz signal. The InAs QDs was grown using standard Stranski-Krastanow technique on semi-insulating GaAs substrate. Excitation pump at 800 nm- and 910 nm-wavelength were used to distinguish THz emission from the InAs/GaAs matrix and InAs respectively. THz-TDS at 800 nm pump revealed intense THz emission comparable to a bulk p-InAs. For 910 nm pump, the THz emission generally weakened and upon applying external magnetic field of opposite polarities, the THz time-domain plot exhibited anomalous phase-shifting. This was attributed to the possible current-surge associated with the permanent dipole in the QD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...