Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337949

RESUMO

Rice (Oryza sativa) varieties are generated through breeding programs focused on local requirements. In Chile, the southernmost rice producer, rice productivity relies on the use and generation of temperate japonica germplasms, which need to be adapted to the intensifying effects of climate change. Advanced biotechnological tools can contribute to these breeding programs; new technologies associated with precision breeding, including gene editing, rely on procedures such as regeneration and gene transfer. In this study, the local rice varieties Platino, Cuarzo, Esmeralda, and Zafiro were evaluated for somatic embryogenesis potential using a process that involved the combined use of auxins and cytokinins. An auxin-based (2,4-D) general medium (2N6) allowed for the induction of embryogenic masses in all the genotypes. After induction, masses required culturing either in N6R (kinetin; Platino) or N6RN (BAP, kinetin, IBA, and 2,4-D; Cuarzo, Esmeralda, and Zafiro) to yield whole plants using regeneration medium (N6F, no hormone). The sprouting rates indicated Platino as the most responsive genotype; for this reason, this variety was evaluated for gene transfer. Fifteen-day-old embryo masses were assayed for Agrobacterium-mediated transformation using the bacterial strain EHA105 harboring pFLC-Myb/HPT/GFP, a modified T-DNA vector harboring a geminivirus-derived replicon. The vector included the green fluorescent protein reporter gene, allowing for continuous traceability. Reporter mRNA was produced as early as 3 d after agroinfiltration, and stable expression of the protein was observed along the complete process. These achievements enable further biotechnological steps in these and other genotypes from our breeding program.

3.
Plants (Basel) ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145795

RESUMO

In sweet cherry (Prunus avium), as in other temperate woody perennials, bud dormancy allows for survival in adverse environmental conditions during winter. During this process, environmental signals such as short days and/or low temperatures trigger internal signals that enable buds to become tolerant to the cold. The process involves tracking chilling units up to chilling the requirement fulfillment to resume growth, a transition involving transcriptional regulation, metabolic signaling, and epigenetic-related regulatory events. Massive sequencing of small RNAs was performed to identify miRNAs involved in sweet cherry dormancy by comparing their expression in field (regular seasonal) and controlled non-stop (continuous) chilling conditions. miRNAs highlighted by sequencing were validated using specific stem-loop PCR quantification, confirming expression patterns for known miRNAs such as miR156e, miR166c, miR172d, miR391, miR482c, and miR535b, as well as for newly proposed miRNAs. In silico prediction of the target genes was used to construct miRNA/target gene nodes. In particular, the involvement of the sweet cherry version for the miR156/SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN genes whose expression was opposite in the two conditions suggests their involvement on dormancy regulation in sweet cherry. miRNA levels indicate that the regulation of stress-related genes and hormone synthesis modulates the expression of calcium metabolism and cell development-associated genes. Understanding the regulatory networks involved in sweet cherry dormancy, particularly in the context of miRNA involvement, represents the first step in the development of new agricultural strategies that may help overcome the increasing challenges presented by global climate change.

4.
Plants (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34579415

RESUMO

In potato (Solanum tuberosum L.), protoplast techniques are limited to a few genotypes; thus, the use of regular regeneration procedures of multicellular explants causes us to face complexities associated to CRISPR/Cas9 gene editing efficiency and final identification of individuals. Geminivirus-based replicons contained in T-DNAs could provide an improvement to these procedures considering their cargo capability. We built a Bean yellow dwarf virus-derived replicon vector, pGEF-U, that expresses all the editing reagents under a multi-guide RNA condition, and the Green Fluorescent Protein (GFP) marker gene. Agrobacterium-mediated gene transfer experiments were carried out on 'Yagana-INIA', a relevant local variety with no previous regeneration protocol. Assays showed that pGEF-U had GFP transient expression for up to 10 days post-infiltration when leaf explants were used. A dedicated potato genome analysis tool allowed for the design of guide RNA pairs to induce double cuts of genes associated to enzymatic browning (StPPO1 and 2) and to cold-induced sweetening (StvacINV1 and StBAM1). Monitoring GFP at 7 days post-infiltration, explants led to vector validation as well as to selection for regeneration (34.3% of starting explants). Plant sets were evaluated for the targeted deletion, showing individuals edited for StPPO1 and StBAM1 genes (1 and 4 lines, respectively), although with a transgenic condition. While no targeted deletion was seen in StvacINV1 and StPPO2 plant sets, stable GFP-expressing calli were chosen for analysis; we observed different repair alternatives, ranging from the expected loss of large gene fragments to those showing punctual insertions/deletions at both cut sites or incomplete repairs along the target region. Results validate pGEF-U for gene editing coupled to regular regeneration protocols, and both targeted deletion and single site editings encourage further characterization of the set of plants already generated.

5.
Front Plant Sci ; 12: 791030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003180

RESUMO

The woody nature of grapevine (Vitis vinifera L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used Bean yellow dwarf virus (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system in vivo and evaluate their editing capability in individuals derived from Agrobacterium-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for green fluorescent protein reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including AUXIN INDUCED IN ROOT CULTURE 12 (VviAIR12), SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER 4 (VviSWEET4), LESION INITIATION 2 (VviLIN2), and DIMERIZATION PARTNER-E2F-LIKE 1 (VviDEL1). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to Erysiphe necator and Botrytis cinerea. Assays have shown that a transgene-free VviDEL1 double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.

6.
Front Immunol ; 11: 595250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240284

RESUMO

Trypanosoma cruzi and Toxoplasma gondii are two parasites than can be transmitted from mother to child through the placenta. However, congenital transmission rates are low for T. cruzi and high for T. gondii. Infection success or failure depends on complex parasite-host interactions in which parasites can alter host gene expression by modulating non-coding RNAs such as miRNAs. As of yet, there are no reports on altered miRNA expression in placental tissue in response to either parasite. Therefore, we infected human placental explants ex vivo by cultivation with either T. cruzi or T. gondii for 2 h. We then analyzed the miRNA expression profiles of both types of infected tissue by miRNA sequencing and quantitative PCR, sequence-based miRNA target prediction, pathway functional enrichment, and upstream regulator analysis of differentially expressed genes targeted by differentially expressed miRNAs. Both parasites induced specific miRNA profiles. GO analysis revealed that the in silico predicted targets of the differentially expressed miRNAs regulated different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the differentially expressed miRNAs identified here modulated crucial host cellular targets that participate in determining the success of infection, these miRNAs might explain the differing congenital transmission rates between the two parasites. Molecules of the different pathways that are regulated by miRNAs and modulated during infection, as well as the miRNAs themselves, may be potential targets for the therapeutic control of either congenital Chagas disease or toxoplasmosis.


Assuntos
Doença de Chagas , Regulação da Expressão Gênica/imunologia , MicroRNAs/imunologia , Placenta , Toxoplasma/imunologia , Toxoplasmose , Trypanosoma cruzi/imunologia , Doença de Chagas/imunologia , Doença de Chagas/patologia , Feminino , Humanos , Placenta/imunologia , Placenta/parasitologia , Placenta/patologia , Gravidez , Toxoplasmose/imunologia , Toxoplasmose/patologia
8.
Plants (Basel) ; 9(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752031

RESUMO

Almost 30 years have passed since the first publication reporting regeneration of transformed peach plants. Nevertheless, the general applicability of genetic transformation of this species has not yet been established. Many strategies have been tested in order to obtain an efficient peach transformation system. Despite the amount of time and the efforts invested, the lack of success has significantly limited the utility of peach as a model genetic system for trees, despite its relatively short generation time; small, high-quality genome; and well-studied genetic resources. Additionally, the absence of efficient genetic transformation protocols precludes the application of many biotechnological tools in peach breeding programs. In this review, we provide an overview of research on regeneration and genetic transformation in this species and summarize novel strategies and procedures aimed at producing transgenic peaches. Promising future approaches to develop a robust peach transformation system are discussed, focusing on the main bottlenecks to success including the low efficiency of A. tumefaciens-mediated transformation, the low level of correspondence between cells competent for transformation and those that have regenerative competence, and the high rate of chimerism in the few shoots that are produced following transformation.

9.
Microorganisms ; 8(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756460

RESUMO

Due to the low incidence of precipitation attributed to climate change, many high-altitude Andean lakes (HAALs) and lagoons distributed along the central Andes in South America may soon disappear. This includes La Brava-La Punta, a brackish lake system located south of the Salar de Atacama within a hyper-arid and halophytic biome in the Atacama Desert. Variations in the physicochemical parameters of the water column can induce changes in microbial community composition, which we aimed to determine. Sixteen sampling points across La Brava-La Punta were studied to assess the influence of water physicochemical properties on the aquatic microbial community, determined via 16S rRNA gene analysis. Parameters such as pH and the concentrations of silica, magnesium, calcium, salinity, and dissolved oxygen showed a more homogenous pattern in La Punta samples, whereas those from La Brava had greater variability; pH and total silica were significantly different between La Brava and La Punta. The predominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia. The genera Psychroflexus (36.85%), Thiomicrospira (12.48%), and Pseudomonas (7.81%) were more abundant in La Brava, while Pseudospirillum (20.73%) and Roseovarius (17.20%) were more abundant in La Punta. Among the parameters, pH was the only statistically significant factor influencing the diversity within La Brava lake. These results complement the known microbial diversity and composition in the HAALs of the Atacama Desert.

10.
BMC Plant Biol ; 19(1): 440, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640557

RESUMO

BACKGROUND: In plants, host factors encoded by susceptibility (S) genes are indispensable for viral infection. Resistance is achieved through the impairment or the absence of those susceptibility factors. Many S genes have been cloned from model and crop species and a majority of them are coding for members of the eukaryotic translation initiation complex, mainly eIF4E, eIF4G and their isoforms. The aim of this study was to investigate the role of those translation initiation factors in susceptibility of stone fruit species to sharka, a viral disease due to Plum pox virus (PPV). RESULTS: For this purpose, hairpin-inducing silencing constructs based on Prunus persica orthologs were used to generate Prunus salicina (Japanese plum) 4E and 4G silenced plants by Agrobacterium tumefaciens-mediated transformation and challenged with PPV. While down-regulated eIFiso4E transgenic Japanese plums were not regenerated in our conditions, eIFiso4G11-, but not the eIFiso4G10-, silenced plants displayed durable and stable resistance to PPV. We also investigated the alteration of the si- and mi-RNA profiles in transgenic and wild-type Japanese plums upon PPV infection and confirmed that the newly generated small interfering (si) RNAs, which are derived from the engineered inverted repeat construct, are the major contributor of resistance to sharka. CONCLUSIONS: Our results indicate that S gene function of the translation initiation complex isoform is conserved in Prunus species. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of the different isoforms of proteins involved in this complex to breed for resistance to sharka in fruit trees.


Assuntos
Resistência à Doença/genética , Fatores de Iniciação em Eucariotos/metabolismo , Doenças das Plantas/imunologia , Vírus Eruptivo da Ameixa/fisiologia , Prunus/genética , Fatores de Iniciação em Eucariotos/genética , Frutas/genética , Frutas/imunologia , Frutas/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Isoformas de Proteínas , Prunus/imunologia , Prunus/virologia , Interferência de RNA , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Árvores
11.
Hortic Res ; 6: 58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30962943

RESUMO

Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.

12.
Front Plant Sci ; 10: 226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881368

RESUMO

Genetic engineering based on Agrobacterium-mediated transformation has been a desirable tool to manipulate single or multiple genes of existing genotypes of woody fruit crops, for which conventional breeding is a difficult and lengthy process due to heterozygosity, sexual incompatibility, juvenility, or a lack of natural sources. To date, successful transformation has been reported for many fruit crops. We review the major progress in genetic transformation of these fruit crops made in the past 5 years, emphasizing reproducible transformation protocols as well as the strategies that have been tested in fruit crops. While direct transformation of scion cultivars was mostly used for fruit quality improvement, biotic and abiotic tolerance, and functional gene analysis, transgrafting on genetically modified (GM) rootstocks showed a potential to produce non-GM fruit products. More recently, genome editing technology has demonstrated a potential for gene(s) manipulation of several fruit crops. However, substantial efforts are still needed to produce plants from gene-edited cells, for which tremendous challenge remains in the context of either cell's recalcitrance to regeneration or inefficient gene-editing due to their polyploidy. We propose that effective transient transformation and efficient regeneration are the key for future utilization of genome editing technologies for improvement of fruit crops.

13.
New Phytol ; 222(4): 1673-1684, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548610

RESUMO

A special regulatory regime applies to products of recombinant nucleic acid modifications. A ruling from the European Court of Justice has interpreted this regulatory regime in a way that it also applies to emerging mutagenesis techniques. Elsewhere regulatory progress is also ongoing. In 2015, Argentina launched a regulatory framework, followed by Chile in 2017 and recently Brazil and Colombia. In March 2018, the USDA announced that it will not regulate genome-edited plants differently if they could have also been developed through traditional breeding. Canada has an altogether different approach with their Plants with Novel Traits regulations. Australia is currently reviewing its Gene Technology Act. This article illustrates the deviation of the European Union's (EU's) approach from the one of most of the other countries studied here. Whereas the EU does not implement a case-by-case approach, this approach is taken by several other jurisdictions. Also, the EU court ruling adheres to a process-based approach while most other countries have a stronger emphasis on the regulation of the resulting product. It is concluded that, unless a functioning identity preservation system for products of directed mutagenesis can be established, the deviation results in a risk of asynchronous approvals and disruptions in international trade.


Assuntos
Comércio , Internacionalidade , Mutagênese/genética , Controle Social Formal , União Europeia
14.
Electron. j. biotechnol ; 30: 103-109, nov. 2017. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1021917

RESUMO

Background: Small ribonucleic acids represent an important repertoire of mobile molecules that exert key roles in several cell processes including antiviral defense. Small RNA based repertoire includes both small interfering RNA (siRNA) and microRNA (miRNA) molecules. In the Prunus genus, sharka disease, caused by the Plum pox virus (PPV), first occurred on European plum (Prunus domestica) and then spread over among all species in this genus and thus classified as quarantine pathogen. Next-generation sequencing (NGS) was used for the study of siRNA/miRNA molecules; however, NGS relies on adequate extraction protocols. Currently, knowledge of PPV-Prunus interactions in terms of siRNA populations and miRNA species is still scarce, and siRNA/miRNA extraction protocols are limited to species such as peach, almond, and sweet cherry. Results: We describe a reliable procedure for siRNA/miRNA purification from Prunus salicina trees, in which previously used protocols did not allow adequate purification. The procedure was based on a combination of commercially available RNA purification kits and specific steps that yielded high quality purifications. The resulting molecules were adequate for library construction and NGS, leading to the development of a pipeline for analysis of both siRNAs and miRNAs in the PPV­P. salicina interactions. Results showed that PPV infection led to altered siRNA profiles in Japanese plum as characterized by decreased 24-nt and increased 21- and 22-nt siRNAs. Infections showed miR164 and miR160 generation and increased miR166, miR171, miR168, miR319, miR157, and miR159. Conclusion: We propose this protocol as a reliable and reproducible small RNA isolation procedure for P. salicina and other Prunus species.


Assuntos
RNA de Plantas/isolamento & purificação , MicroRNAs/isolamento & purificação , RNA Interferente Pequeno/isolamento & purificação , Prunus domestica/genética , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/fisiologia , Interações Hospedeiro-Patógeno , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Prunus domestica/imunologia , Prunus domestica/virologia
15.
Front Plant Sci ; 8: 812, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579998

RESUMO

Recently, the plant hormone abscisic acid (ABA) has been implicated as a key player in the regulation of endodormancy (ED) in grapevine buds (Vitis vinifera L). In this study, we show that in the vine, the expression of genes related to the biosynthesis of ABA (VvNCED1; VvNCED2) and the content of ABA are significantly higher in the latent bud than at the shoot apex, while the expression of an ABA catabolic gene (VvA8H3) showed no significant difference between either organ. A negative correlation between the content of ABA and transcript levels of cell cycle genes (CCG) was found in both tissues. This result suggested that ABA may negatively regulate the expression of CCG in meristematic tissues of grapevines. To test this proposition, the effect of ABA on the expression of CCG was analyzed in two meristematic tissues of the vine: somatic embryos and shoot apexes. The results indicated that cell cycle progression is repressed by ABA in both organs, since it down-regulated the expression of genes encoding cyclin-dependent kinases (VvCDKB1, VvCDKB2) and genes encoding cyclins of type A (VvCYCA1, VvCYCA2, VvCYCA3), B (VvCYCB), and D (VvCYCD3.2a) and up-regulated the expression of VvICK5, a gene encoding an inhibitor of CDKs. During ED, the content of ABA increased, and the expression of CCG decreased. Moreover, the dormancy-breaking compound hydrogen cyanamide (HC) reduced the content of ABA and up-regulated the expression of CCG, this last effect was abolished when HC and ABA were co-applied. Taken together, these results suggest that ABA-mediated repression of CCG transcription may be part of the mechanism through which ABA modulates the development of ED in grapevine buds.

16.
Tree Physiol ; 37(12): 1739-1751, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541567

RESUMO

Epigenetic modifications can yield information about connections between genotype, phenotype variation and environmental conditions. Bud dormancy release in temperate perennial fruit trees depends on internal and environmental signals such as cold accumulation and photoperiod. Previous investigations have noted the participation of epigenetic mechanisms in the control of this physiological process. We examined whether epigenetic modifications were modulated in MADS-box genes, potential candidates for the regulation of bud dormancy and flowering in sweet cherry (Prunus avium L.). We identified and cloned two MADS-box genes homologous to the already-characterized dormancy regulators DORMANCY-ASSOCIATED MADS-box (DAM3 and DAM5) from Prunus persica (L.) Batsch. Bisulfite sequencing of the identified genes (PavMADS1 and PavMADS2), Methylated DNA Immunoprecipitation and small RNA deep sequencing were performed to analyze the presence of DNA methylations that could be guided by non-coding RNAs in the floral buds exposed to differential chilling hours. The results obtained reveal an increase in the level of DNA methylation and abundance of matching small interference RNAs (siRNAs) in the promoter of PavMADS1 when the chilling requirement is complete. For the first intron and 5' UTR of PavMADS1, de novo DNA methylation could be associated with the increase in the abundance of 24-nt siRNA matching the promoter area. Also, in the second large intron of PavMADS1, maintenance DNA methylation in all cytosine contexts is associated with the presence of homologous siRNAs in that zone. For PavMADS2, only maintenance methylation was present in the CG context, and no matching siRNAs were detected. Silencing of PavMADS1 and PavMADS2 coincided with an increase in Flowering Locus T expression during dormancy. In conclusion, DNA methylations and siRNAs appear to be involved in the silencing of PavMADS1 during cold accumulation and dormancy release in sweet cherry.


Assuntos
Prunus avium/genética , Prunus avium/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
17.
Ecol Evol ; 7(8): 2480-2488, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28428840

RESUMO

A national-scale study of outcrossing potential within Chilean vascular flora was conducted using an upgraded algorithm, which adds parameters such as pollinator agents, climate, and geographic conditions. Datasets were organized and linked in a Web platform (www.flujogenico.cl), in which the development of a total outcrossing potential (TOP) predictor was formulated. The TOP predictor is the engine in the Web platform, which models the effect of a type of agricultural practice on others (coexistence calculation mode) and on the environment (biodiversity calculation mode). The scale for TOP results uses quintiles in order to define outcrossing potential between species as "very low," "low," "medium," "high," or "very high." In a coexistence analysis considering 256 species (207 genera), the 10 highest TOP values were for genera Citrus, Prunus, Trifolium, Brassica, Allium, Eucalyptus, Cucurbita, Solanum, Lollium, and Lotus. The highest TOP for species in this analysis fell at "high" potential, 4.9% of the determined values. In biodiversity mode, seven out of 256 cultivated species (2.7%) were native, and 249 (97.3%) corresponded to introduced species. The highest TOP was obtained in the genera Senecio, Calceolaria, Viola, Solanum, Poa, Alstroemeria, Valeriana, Vicia, Atriplex, and Campanula, showing "high" potential in 4.9% of the values. On the other hand, 137 genetically modified species, including the commercial and pre-commercial developments, were included and represented 100 genera. Among these, 22 genera had relatives (i.e., members of the same genus) in the native/introduced group. The genera with the highest number of native/introduced relatives ranged from one (Ipomea, Limonium, Carica, Potentilla, Lotus, Castanea, and Daucus) to 66 species (Solanum). The highest TOP was obtained when the same species were coincident in both groups, such as for Carica chilensis, Prosopis tamarugo, and Solanum tuberosum. Results are discussed from the perspective of assessing the possible impact of cultivated species on Chilean flora biodiversity. The TOP predictor (http://epc.agroinformatica.cl/) is useful in the context of environmental risk assessment.

18.
J Gen Appl Microbiol ; 63(1): 11-21, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-27989999

RESUMO

The nematode Xiphinema index affects grape vines and transmits important viruses associated with fanleaf degeneration. Pseudomonas spp. are an extensive bacterial group in which important biodegradation and/or biocontrol properties can occur for several strains in the group. The aim of this study was to identify new Pseudomonas isolates with antagonist activity against X. index. Forty bacterial isolates were obtained from soil and root samples from Chilean vineyards. Thirteen new fluorescent pseudomonads were found and assessed for their antagonistic capability. The nematicide Pseudomonas protegens CHA0 was used as a control. Challenges of nematode individuals in King's B semi-solid agar Petri dishes facilitated the identification of the Pseudomonas veronii isolate R4, as determined by a 16S rRNA sequence comparison. This isolate was as effective as CHA0 as an antagonist of X. index, although it had a different lethality kinetic. Milk-induced R4 cultures exhibited protease and lipase activities in cell supernatants using both gelatin/tributyrin Petri dish assays and zymograms. Three proteins with these activities were isolated and subjected to mass spectrometry. Amino acid partial sequences enabled the identification of a 49-kDa protease similar to metalloprotease AprA and two lipases of 50 kDa and 69 kDa similar to LipA and ExoU, respectively. Electron microscopy analyses of challenged nematodes revealed degraded cuticle after R4 supernatant treatment. These results represent a new and unexplored property in this species associated with the presence of secretable lipases and protease, similar to characterized enzymes present in biocontrol pseudomonads.


Assuntos
Antibiose , Antinematódeos/farmacologia , Enzimas/farmacologia , Nematoides/efeitos dos fármacos , Proteínas/farmacologia , Pseudomonas/fisiologia , Animais , Antinematódeos/química , Antinematódeos/isolamento & purificação , Chile , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Enzimas/química , Enzimas/isolamento & purificação , Espectrometria de Massas , Microscopia Eletrônica , Peso Molecular , Nematoides/ultraestrutura , Filogenia , Raízes de Plantas/microbiologia , Proteínas/química , Proteínas/isolamento & purificação , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Análise de Sobrevida
19.
Stand Genomic Sci ; 11: 76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777646

RESUMO

A new plant commensal Pseudomonas veronii isolate (strain R4) was identified from a Xiphinema index biocontrol screen. Isolated from grapevine roots from vineyards in central Chile, the strain R4 exhibited a slower yet equivalently effective nematicide activity as the well-characterized P. protegens CHA0. Whole genome sequencing of strain R4 and comparative analysis among the available Pseudomonas spp. genomes allowed for the identification of gene clusters that encode putative extracellular proteases and lipase synthesis and secretion systems, which are proposed to mediate-at least in part-the observed nematicidal activity. In addition, R4 strain presented relevant gene clusters related to metal tolerance, which is typical in P. veronii. Bioinformatics analyses also showed gene clusters associated with plant growth promoting activity, such as indole-3-acetic acid synthesis. In addition, the strain R4 genome presented a metabolic gene clusters associated with phosphate and ammonia biotransformation from soil, which could improve their availability for plants.

20.
J Biotechnol ; 233: 200-10, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27411902

RESUMO

The conserved mechanism of action of micro-RNAs (miRNAs) as regulators of gene expression has allowed the use of artificial miRNAs (amiRNAs) as a powerful tool for candidate gene evaluation in plants. Based on the use of a Vitis vinifera miRNA molecule (i.e., vvi-miR319e), the present work presents a new methodology for designing artificial miR319e precursors (pre-amiR319e). As a proof of concept, we silenced the green fluorescent protein (GFP) gene in transgenic Nicotiana benthamiana plants. This methodology includes a two-step PCR reaction in which overlapping long primers allow for the complete generation of pre-amiR319e-GFP molecules that are adequate for recombination into Gateway vectors with no further requirements. The seed region in amiRNA was directed against the 3'-end portion of the GFP gene. Three groups of transformed N. benthamiana plants were generated: GFP-, amiR319e-GFP-, and GFP plus miR319e-GFP-expressing vectors. A similar group of wild-type plants was included. Confocal microscopy evaluation of these groups revealed strong silencing of the GFP phenotype in the double GFP plus amiR319e-GFP group. The molecular characterization of silenced plants was achieved via modified 5'RACE of the GFP mRNA and revealed the occurrence of a partial, 3'-end GFP mRNA molecule that was generated in planta. In addition, large-scale small RNA sequencing confirmed the occurrence of the expected 21-nt miR319e-GFP species and other 22- and 24-nt species that exhibited sequence relationships with the expected amiRNA. These results highlight the possibility of using vvi-MIR319 as a template for the generation of single amiRNAs as a tool for gene silencing in plants.


Assuntos
Primers do DNA/genética , Inativação Gênica , MicroRNAs/genética , RNA de Plantas/genética , Vitis/genética , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...