Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 163: 646-655, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30096666

RESUMO

Chemical pollution from pharmaceuticals is increasingly recognized as a major hazard to the aquatic biota. Among the wide variety of pharmaceuticals, fluoxetine (FLX) is one of the most widely prescribed antidepressants, and therefore, it is frequently identified in the aquatic environment. As FLX is designed to alter human behaviour and many physiological pathways are conserved across vertebrates, this drug may affect the behaviour of fish living in FLX-polluted environments. Here, we exposed groups of female mosquitofish Gambusia holbrooki to waterborne FLX for 14 days, under semi-static conditions with daily renewal of test solutions. Following exposure, we conducted a set of behavioural assays in individual fish, aimed at assessing the effects of FLX on their locomotor activity and behavioural responses. We found that FLX impaired swimming behaviour at high concentrations (25 µg/L and 50 µg/L) but not at low concentrations close to environmental levels (1 µg/L and 5 µg/L). When swimming activity was assessed 5 min after transfer of the focal fish to the testing tank, 50 µg/L FLX was the only concentration showing significant effects. However, when the same trials were performed 24 h later, 25 µg/L FLX turned out to be an effect concentration in addition to 50 µg/L. Interestingly, these concentrations would elicit fish plasma concentrations comprised within the range of human therapeutic doses. When subjected to a light/dark preference test, fish showed tendency to remain less time in the dark area at high FLX concentrations, thus suggesting an anti-anxiety response. Shoaling behaviour was not affected by FLX exposure. Our study contributes to the growing body of literature evaluating the effects of FLX on animal behaviour. Regarding the experimental design used in behavioural testing, our findings suggest that focal fish should be subjected to long habituation periods, namely of at least a few hours, in order to better assess the effects of drug exposure.


Assuntos
Antidepressivos/toxicidade , Comportamento Animal/efeitos dos fármacos , Ciprinodontiformes/fisiologia , Fluoxetina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Natação , Testes de Toxicidade
2.
Front Pharmacol ; 9: 374, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755349

RESUMO

Ibogaine is a potent psychedelic alkaloid that has been the focus of intense research because of its intriguing anti-addictive properties. According to anecdotic reports, ibogaine has been originally classified as an oneirogenic psychedelic; i.e., induces a dream-like cognitive activity while awake. However, the effects of ibogaine administration on wakefulness (W) and sleep have not been thoroughly assessed. The main aim of our study was to characterize the acute effects of ibogaine administration on W and sleep. For this purpose, polysomnographic recordings on chronically prepared rats were performed in the light phase during 6 h. Animals were treated with ibogaine (20 and 40 mg/kg) or vehicle, immediately before the beginning of the recordings. Furthermore, in order to evaluate associated motor behaviors during the W period, a different group of animals was tested for 2 h after ibogaine treatment on an open field with video-tracking software. Compared to control, animals treated with ibogaine showed an increase in time spent in W. This effect was accompanied by a decrease in slow wave sleep (SWS) and rapid-eye movements (REM) sleep time. REM sleep latency was significantly increased in animals treated with the higher ibogaine dose. While the effects on W and SWS were observed during the first 2 h of recordings, the decrement in REM sleep time was observed throughout the recording time. Accordingly, ibogaine treatment with the lower dose promoted an increase on locomotion, while tremor and flat body posture were observed only with the higher dose in a time-dependent manner. In contrast, head shake response, a behavior which has been associated in rats with the 5HT2A receptor activation by hallucinogens, was not modified. We conclude that ibogaine promotes a waking state that is accompanied by a robust and long-lasting REM sleep suppression. In addition, it produces a dose-dependent unusual motor profile along with other serotonin-related behaviors. Since ibogaine is metabolized to produce noribogaine, further experiments are needed to elucidate if the metabolite and/or the parent drug produced these effects.

3.
Front Behav Neurosci ; 11: 200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093669

RESUMO

Caffeine is the world's most popular psychostimulant and is frequently used as an active adulterant in many illicit drugs including cocaine. Previous studies have shown that caffeine can potentiate the stimulant effects of cocaine and cocaine-induced drug seeking behavior. However, little is known about the effects of this drug combination on reward-related learning, a key process in the maintenance of addiction and vulnerability to relapse. The goal of the present study was thus to determine caffeine and cocaine combined effects on the Conditioned Place Preference (CPP) test and to determine potential differential mRNA expression in the Nucleus Accumbens (NAc) and medial prefrontal cortex (mPFC) of immediate-early genes (IEGs) as well as dopamine and adenosine receptor subunits. Mice were treated with caffeine (5 mg/kg, CAF), cocaine (10 mg/kg, COC), or their combination (caffeine 5 mg/kg + cocaine 10 mg/kg, CAF-COC) and trained in the CPP test or treated with repeated injections inside the home cage. NAc and mPFC tissues were dissected immediately after the CPP test, after a single conditioning session or following psychostimulant injection in the home cage for mRNA expression analysis. CAF-COC induced a marked change of preference to the drug conditioned side of the CPP and a significant increase in locomotion compared to COC. Gene expression analysis after CPP test revealed specific up-regulation in the CAF-COC group of Drd1a, cFos, and FosB in the NAc, and cFos, Egr1, and Npas4 in the mPFC. Importantly, none of these changes were observed when animals received same treatments in their home cage. With a single conditioning session, we found similar effects in both CAF and CAF-COC groups: increased Drd1a and decreased cFos in the NAc, and increased expression of Drd1a and Drd2, in the mPFC. Interestingly, we found that cFos and Npas4 gene expression were increased only in the mPFC of the CAF-COC. Our study provides evidence that caffeine acting as an adulterant could potentiate reward-associated memories elicited by cocaine. This is associated with specific changes in IEGs expression that were observed almost exclusively in mice that received the combination of both psychostimulants in the context of CPP memory encoding and retrieval. Our results highlight the potential relevance of caffeine in the maintenance of cocaine addiction which might be mediated by modifying neural plasticity mechanisms that strengthen learning of the association between drug and environment.

4.
Am J Addict ; 24(5): 475-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25974755

RESUMO

BACKGROUND AND OBJECTIVES: Caffeine is an active adulterant found in several drugs of abuse including coca paste (CP). We had previously demonstrated that caffeine potentiated the acute stimulant effect induced by CP seized samples. The role of caffeine in the expression of sensitization elicited by a CP seized sample (CP1) was here evaluated. METHODS: CP1 (equivalent dose of 10 mg/kg of cocaine), cocaine (pure, 10 mg/kg), a combination of cocaine 10 mg/kg plus caffeine 2.5 mg/kg (CP1-surrogate) and saline (control) were intraperitoneally injected in male rats under two different sensitization schedules. Ambulatory locomotion was recorded in 58 animals. RESULTS: After five daily CP1 injections and 5 days of withdrawal, CP1-challenged animals displayed a more robust sensitization than cocaine-treated animals. When a 3 injections-regime of CP1-surrogate or cocaine was assayed, only CP1-surrogate was able to elicit sensitization. DISCUSSION AND CONCLUSIONS: Caffeine enhances and accelerates the CP1-induced sensitization. SCIENTIFIC SIGNIFICANCE: Results may shed light on the fast and high dependence observed in CP users.


Assuntos
Cafeína/farmacologia , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Coca , Transtornos Relacionados ao Uso de Cocaína/psicologia , Contaminação de Medicamentos , Animais , Nível de Alerta/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Injeções Intraperitoneais , Masculino , Atividade Motora/efeitos dos fármacos , Pomadas , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...