Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 1045450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704354

RESUMO

Since the first sequencing of the human genome, associated sequencing costs have dramatically lowered, leading to an explosion of genomic data. This valuable data should in theory be of huge benefit to the global community, although unfortunately the benefits of these advances have not been widely distributed. Much of today's clinical-genomic data is siloed and inaccessible in adherence with strict governance and privacy policies, with more than 97% of hospital data going unused, according to one reference. Despite these challenges, there are promising efforts to make clinical-genomic data accessible and useful without compromising security. Specifically, federated data platforms are emerging as key resources to facilitate secure data sharing without having to physically move the data from outside of its organizational or jurisdictional boundaries. In this perspective, we summarize the overarching progress in establishing federated data platforms, and highlight critical considerations on how they should be managed to ensure patient and public trust. These platforms are enabling global collaboration and improving representation of underrepresented groups, since sequencing efforts have not prioritized diverse population representation until recently. Federated data platforms, when combined with advances in no-code technology, can be accessible to the diverse end-users that make up the genomics workforce, and we discuss potential strategies to develop sustainable business models so that the platforms can continue to enable research long term. Although these platforms must be carefully managed to ensure appropriate and ethical use, they are democratizing access and insights to clinical-genomic data that will progress research and enable impactful therapeutic findings.

2.
Nat Ecol Evol ; 1(12): 1961-1969, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29109466

RESUMO

The parasite Leishmania  donovani causes a fatal disease termed visceral leishmaniasis. The process through which the parasite adapts to environmental change remains largely unknown. Here we show that aneuploidy is integral for parasite adaptation and that karyotypic fluctuations allow for selection of beneficial haplotypes, which impact transcriptomic output and correlate with phenotypic variations in proliferation and infectivity. To avoid loss of diversity following karyotype and haplotype selection, L. donovani utilizes two mechanisms: polyclonal selection of beneficial haplotypes to create coexisting subpopulations that preserve the original diversity, and generation of new diversity as aneuploidy-prone chromosomes tolerate higher mutation rates. Our results reveal high aneuploidy turnover and haplotype selection as a unique evolutionary adaptation mechanism that L. donovani uses to preserve genetic diversity under strong selection. This unexplored process may function in other human diseases, including fungal infection and cancer, and stimulate innovative treatment options.


Assuntos
Aneuploidia , Haplótipos , Leishmania donovani/genética , Proteínas de Protozoários/genética , Seleção Genética , Adaptação Biológica
3.
Genome Biol ; 17: 32, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911872

RESUMO

BACKGROUND: Legumes are the third largest family of angiosperms and the second most important crop class. Legume genomes have been shaped by extensive large-scale gene duplications, including an approximately 58 million year old whole genome duplication shared by most crop legumes. RESULTS: We report the genome and the transcription atlas of coding and non-coding genes of a Mesoamerican genotype of common bean (Phaseolus vulgaris L., BAT93). Using a comprehensive phylogenomics analysis, we assessed the past and recent evolution of common bean, and traced the diversification of patterns of gene expression following duplication. We find that successive rounds of gene duplications in legumes have shaped tissue and developmental expression, leading to increased levels of specialization in larger gene families. We also find that many long non-coding RNAs are preferentially expressed in germ-line-related tissues (pods and seeds), suggesting that they play a significant role in fruit development. Our results also suggest that most bean-specific gene family expansions, including resistance gene clusters, predate the split of the Mesoamerican and Andean gene pools. CONCLUSIONS: The genome and transcriptome data herein generated for a Mesoamerican genotype represent a counterpart to the genomic resources already available for the Andean gene pool. Altogether, this information will allow the genetic dissection of the characters involved in the domestication and adaptation of the crop, and their further implementation in breeding strategies for this important crop.


Assuntos
Genoma de Planta , Repetições de Microssatélites/genética , Phaseolus/genética , Transcriptoma/genética , DNA de Plantas/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Genótipo , Humanos , Filogenia , Sementes/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...