Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 5: 334, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619855

RESUMO

Lung and brain development is often altered in infants born preterm and exposed to excess oxygen, and this can lead to impaired lung function and neurocognitive abilities later in life. Oxygen-derived reactive oxygen species and the ensuing inflammatory response are believed to be an underlying cause of disease because over-expression of some anti-oxidant enzymes is protective in animal models. For example, neurodevelopment is preserved in mice that ubiquitously express human extracellular superoxide dismutase (EC-SOD) under control of an actin promoter. Similarly, oxygen-dependent changes in lung development are attenuated in transgenic Sftpc EC-SOD mice that over-express EC-SOD in pulmonary alveolar epithelial type II cells. But whether anti-oxidants targeted to the lung provide protection to other organs, such as the brain is not known. Here, we use transgenic Sftpc EC-SOD mice to investigate whether lung-specific expression of EC-SOD also preserves neurodevelopment following exposure to neonatal hyperoxia. Wild type and Sftpc EC-SOD transgenic mice were exposed to room air or 100% oxygen between postnatal days 0-4. At 8 weeks of age, we investigated neurocognitive function as defined by novel object recognition, pathologic changes in hippocampal neurons, and microglial cell activation. Neonatal hyperoxia impaired novel object recognition memory in adult female but not male mice. Behavioral deficits were associated with microglial activation, CA1 neuron nuclear contraction, and fiber sprouting within the hilus of the dentate gyrus (DG). Over-expression of EC-SOD in the lung preserved novel object recognition and reduced the observed changes in neuronal nuclear size and myelin basic protein fiber density. It had no effect on the extent of microglial activation in the hippocampus. These findings demonstrate pulmonary expression of EC-SOD preserves short-term memory in adult female mice exposed to neonatal hyperoxia, thus suggesting anti-oxidants designed to alleviate oxygen-induced lung disease such as in preterm infants may also be neuroprotective.

2.
Exp Neurol ; 297: 82-91, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28757259

RESUMO

Post-ischemic neurodegeneration remains the principal cause of mortality following cardiac resuscitation. Recent studies have implicated gastrointestinal ischemia in the sepsis-like response associated with the post-cardiac arrest syndrome (PCAS). However, the extent to which the resulting low-grade endotoxemia present in up to 86% of resuscitated patients affects cerebral ischemia-reperfusion injury has not been investigated. Here we report that a single injection of low-dose lipopolysaccharide (50µg/kg, IP) delivered after global cerebral ischemia (GCI) induces blood-brain barrier permeability, microglial activation, cortical injury, and functional decline in vivo, compared to ischemia alone. And while GCI was sufficient to induce neutrophil (PMN) activation and recruitment to the post-ischemic CNS, minimal endotoxemia exhibited synergistic effects on markers of systemic inflammation including PMN priming, lung damage, and PMN burden within the lung and other non-ischemic organs including the kidney and liver. Our findings predict that acute interventions geared towards blocking the effects of serologically occult endotoxemia in survivors of cardiac arrest will limit delayed neurodegeneration, multi-organ dysfunction and potentially other features of PCAS. This work also introduces lung-brain coupling as a novel therapeutic target with broad effects on innate immune priming and post-ischemic neurodegeneration following cardiac arrest and related cerebrovascular conditions.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/patologia , Endotoxemia/patologia , Pulmão/patologia , Insuficiência de Múltiplos Órgãos/patologia , Traumatismo por Reperfusão/patologia , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Endotoxemia/induzido quimicamente , Endotoxemia/fisiopatologia , Lipopolissacarídeos/toxicidade , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Distribuição Aleatória , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/fisiopatologia
3.
Neurobiol Aging ; 29(11): 1690-701, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17537546

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder afflicting >500,000 patients in the United States alone. This age-related progressive disorder is typified by invariant loss of dopaminergic substantia nigra neurons (DAN), dystrophic neurites, the presence of alpha-synuclein (SYN) positive intracytoplasmic inclusions (Lewy bodies) in the remaining DAN, and activated microglia. As such, microglial activation and resultant increase in proinflammatory molecules have moved to the forefront of PD research as a potential pathobiologic mechanism of disease. Herein, we present data demonstrating early microglial activation in mice that over-express wild-type SYN, the release of SYN from a SYN overexpressing MN9D cell line, and dose-dependent SYN-mediated activation of primary microglial cultures with consequent increases in proinflammatory molecules. Furthermore, we provide evidence that the CD36 scavenger receptor and downstream kinases are involved in SYN-mediated microglial activation. Together, our data suggest an early role for SYN and inflammation in PD pathogenesis.


Assuntos
Citocinas/metabolismo , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Microglia/metabolismo , Transtornos Parkinsonianos/metabolismo , Sinucleínas/efeitos dos fármacos , Sinucleínas/metabolismo , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...