Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 197: 107893, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754115

RESUMO

Wolbachia bacterial endosymbionts provide protection against pathogens in various arthropod species but the underlying mechanisms remain misunderstood. By using a natural Wolbachia nuclear insert (f-element) in the isopod Armadillidium vulgare, we explored whether Wolbachia presence is mandatory to observe protection in this species or the presence of its genes is sufficient. We assessed survival of closely related females carrying or lacking the f-element (and lacking Wolbachia) challenged with the bacterial pathogen Salmonella enterica. Despite marginal significant effects, the f-element alone did not appear to confer survival benefits to its host, suggesting that Wolbachia presence in cells is crucial for protection.


Assuntos
Simbiose , Wolbachia , Feminino , Animais , Bactérias
2.
Dev Comp Immunol ; 126: 104245, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453995

RESUMO

Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.


Assuntos
Invertebrados , Simbiose , Animais , Bactérias , Fungos , Interações entre Hospedeiro e Microrganismos
3.
Zookeys ; 1101: 131-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760973

RESUMO

Invertebrate immune priming is defined as an enhanced protection against secondary pathogenic infections when individuals have been previously exposed to the same or a different pathogen. Immune priming can be energetically costly for individuals, thus impacting trade-offs between life-history traits, like reproduction, growth, and lifetime. Here, the reproductive cost(s) and senescence patterns of immune priming against S.enterica in the common woodlouse A.vulgare (Crustacea, Isopoda) were investigated. Four different groups of females were used that either (1) have never been injected (control), (2) were injected twice with S.enterica (7 days between infections), (3) were firstly injected with LB-broth, then with S.enterica, and (4) females injected only once with S.enterica. All females were allowed to breed with one non-infected male and were observed for eight months. Then, the number of clutches produced, the time taken to produce the clutch(es), the number of offspring in each clutch, the senescence biomarkers of females, and parameters of their haemocytes were compared. The result was that immune priming did not significantly impact reproductive abilities, senescence patterns, and haemocyte parameters of female A.vulgare, but had an indirect effect through body weight. The lighter immune primed females took less time to produce the first clutch, which contained less offspring, but they were more likely to produce a second clutch. The opposite effects were observed in the heavier immune primed females. By highlighting that immune priming was not as costly as expected in A.vulgare, these results provide new insights into the adaptive nature of this immune process.

4.
J Evol Biol ; 34(2): 256-269, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33108676

RESUMO

The protection conferred by a first infection upon a second pathogenic exposure (i.e. immune priming) is an emergent research topic in the field of invertebrate immunity. Immune priming has been demonstrated in various species, but little is known about the intrinsic factors that may influence this immune process. In this study, we tested whether age, gender and the symbiotic bacterium Wolbachia affect the protection resulting from immune priming in A. vulgare against S. enterica. We firstly primed young and old, symbiotic and asymbiotic males and females, either with a non-lethal low dose of S. enterica, LB broth or without injection (control). Seven days post-injection, we performed a LD50 injection of S. enterica in all individuals and we monitored their survival rates. We demonstrated that survival capacities depend on these three factors: young and old asymbiotic individuals (males and females) expressed immune priming (S. enterica-primed individuals survived better than LB-primed and non-primed), with a general decline in the strength of protection in old females, but not in old males, compared to young. When Wolbachia is present, the immune priming protection was observed in old, but not in young symbiotic individuals, even if the Wolbachia load on entire individuals is equivalent regardless to age. Our overall results showed that the immune priming protection in A. vulgare depends on individuals' states, highlighting the need to consider these factors both in mechanistical and evolutionary studies focusing on invertebrate's immunity.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Isópodes/imunologia , Salmonella enterica/fisiologia , Wolbachia/fisiologia , Fatores Etários , Animais , Feminino , Masculino , Fatores Sexuais , Simbiose
5.
Microbiome ; 8(1): 117, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795355

RESUMO

How does microbiota research impact our understanding of biological individuality? We summarize the interdisciplinary summer school on "Microbiota, symbiosis and individuality: conceptual and philosophical issues" (July 2019), which was supported by a European Research Council starting grant project "Immunity, DEvelopment, and the Microbiota" (IDEM). The summer school centered around interdisciplinary group work on four facets of microbiota research: holobionts, individuality, causation, and human health. The conceptual discussion of cutting-edge empirical research provided new insights into microbiota and highlights the value of incorporating into meetings experts from other disciplines, such as philosophy and history of science. Video Abstract.


Assuntos
Pesquisa Biomédica , Individualidade , Estudos Interdisciplinares , Microbiota , Instituições Acadêmicas , Simbiose , Europa (Continente) , Saúde , Humanos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...