Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-13, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488117

RESUMO

The main chemical components of waste cow bones are apatite minerals, especially those containing calcium and phosphorus. This study investigated whether this bone could produce extracted hydroxyapatite through calcining at 900° C for different holding times (1-6 h). An average mass loss of 45% occurred in this experiment during the preparation of bone powders, which involved crushing and further calcining at this temperature. The quantitative XRD analysis showed that 99.97 wt.% hydroxyapatite and over 0.3 wt.% calcite were present in the raw and as-calcined bone powders, with trace amounts of CaFe3O5 (calcium ferrite) phases appearing in the calcined product. Depending on the holding calcining times, SEM images of the calcined bovine powders revealed aggregate sizes ranging from 0.5-3 µm and crystallite (grain) sizes ranging from 70 to 340 nm in all calcium-phosphate powder products. Following EDX analysis of all sample surfaces, possible calcium-deficient hydroxyapatite instead of hydroxyapatite formed, as evidenced by the calcined product's Ca/P ratio exceeding 1.67. Additionally, calcining cow bones for 5-6 h at 900° C yielded a high-purity nano-crystalline hydroxyapatite powder precursor in biomedical applications.

2.
Environ Technol ; 45(12): 2375-2387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36695167

RESUMO

ABSTRACTThis study presents the use of a low-temperature hydrothermal method for extracting calcium sources from green mussel shell (P. Viridis) wastes and converting them into synthetic nanosized hydroxyapatite (HA). In this study, raw mussel shells were washed, pulverised, and sieved to start producing a fine calcium carbonate-rich powder. XRD quantitative analysis confirmed that the powder contains 97.6 wt. % aragonite. This powder was then calcined for 5 h at 900 °C to remove water, salt, and mud, yielding a calcium-rich feedstock with major minerals of calcite (68.7 wt.%), portlandite (24.7 wt.%), and minor aragonite (6.5 wt.%). The calcined powders were dissolved in aqueous stock solutions of HNO3 and NH4OH before hydrothermally reacting with phosphoric acid [(NH4)2HPO4], yielding pure, nanoscale (16-18 nm) carbonated HA crystals, according to XRD, FT-IR, and SEM analyses. The use of a low-temperature hydrothermal method for a feedstock powder produced by the calcination of low-cost mussel shell wastes would be a valuable processing approach for the industry's development of large-scale hydroxyapatite nanoparticle production.


Assuntos
Durapatita , Perna (Organismo) , Animais , Perna (Organismo)/química , Cálcio , Temperatura , Espectroscopia de Infravermelho com Transformada de Fourier , Pós , Carbonato de Cálcio/química
3.
Environ Technol ; : 1-11, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35849141

RESUMO

The study presented a powder processing method involving calcination and subsequent carbonation in the synthesis of precipitated calcium carbonate (PCC) for recycling green mussel shells, which contain a high calcium carbonate content. The purity of portlandite [Ca(OH)2] as a result of calcination and subsequent moisture absorption during storage was verified using the XRD-Rietveld method. Further quantitative XRD Rietveld analysis of the PCC product confirmed the presence of vaterite (55.20 wt.%) and calcite (44.80 wt.%) minerals after carbonation process of the calcined powder product. The SEM examination of this product revealed particle aggregates of non-uniform polyhedral and cubical grains of varying small and large sizes. The FTIR analysis also confirmed that calcination and subsequent hydration of mussel shell powder yielded pure portlandite, whereas the carbonation yielded PCC polymorphism. As a result, this powder processing method is simple to scale and reduces the cost of PCC synthesis, which is critical for practical applications. The current study demonstrated that the powder processing method for recycling green mussel shells as starting materials in biomedical applications is technically feasible.

4.
Adv Food Nutr Res ; 79: 1-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27770857

RESUMO

l-Asparaginase (EC 3.5.1.1) is an enzyme that catalyzes the hydrolysis of l-asparagine to l-aspartic acid. This enzyme has an important role in medicine and food. l-Asparaginase is a potential drug in cancer therapy. Furthermore, it is also applied for reducing acrylamide, a carcinogenic compound in baked and fried foods. Until now, approved l-asparaginases for both applications are few due to their lack of appropriate properties. As a result, researchers have been enthusiastically seeking new sources of enzyme with better performance. A great number of terrestrial l-asparaginase-producing microorganisms have been reported but unfortunately, almost all failed to meet criteria for cancer therapy and acrylamide reducing agent. As a largest area than Earth, marine environment, by contrast, has not been optimally explored yet. So far, a great challenge facing an exploration of marine microorganisms is mainly due to their harsh, mysterious, and dangerous environment. It is clear that marine environment, a gigantic potential source for marine natural products is scantily revealed, although several approaches and technologies have been developed. This chapter presents the historical of l-asparaginase discovery and applications. It is also discussed, how the marine environment, even though offering a great potency but is still one of the less explored area for l-asparaginase-producing microorganisms.


Assuntos
Organismos Aquáticos/química , Asparaginase/metabolismo , Bactérias/enzimologia , Fungos/enzimologia , Asparaginase/química , Asparaginase/genética , Tecnologia de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...