Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(12): 1987-1996, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462445

RESUMO

Transcription factor NRF2 is involved in inflammatory reactions, maintenance of redox balance, metabolism of xenobiotics, and is of particular interest for studying aging. In the present work, the CRISPR/Cas9 genome editing technology was used to generate the NRF2ΔNeh2 mice containing a substitution of eight amino acid residues at the N-terminus of the NRF2 protein, upstream of the functional Neh2 domain, which ensures binding of NRF2 to its inhibitor KEAP1. Heterozygote NRF2wt/ΔNeh2 mice gave birth to homozygous mice with lower than expected frequency, accompanied by their increased embryonic lethality and visual signs of anemia. Mouse embryonic fibroblasts (MEFs) from the NRF2ΔNeh2/ΔNeh2 homozygotes showed impaired resistance to oxidative stress compared to the wild-type MEFs. The tissues of homozygous NRF2ΔNeh2/ΔNeh2 animals had a decreased expression of the NRF2 target genes: NAD(P)H:Quinone oxidoreductase-1 (Nqo1); aldehyde oxidase-1 (Aox1); glutathione-S-transferase A4 (Gsta4); while relative mRNA levels of the monocyte chemoattractant protein 1 (Ccl2), vascular cell adhesion molecule 1 (Vcam1), and chemokine Cxcl8 was increased. Thus, the resulting mutation in the Nfe2l2 gene coding for NRF2, partially impaired function of this transcription factor, expanding our insights into the functional role of the unstructured N-terminus of NRF2. The obtained NRF2ΔNeh2 mouse line can be used as a model object for studying various pathologies associated with oxidative stress and inflammation.


Assuntos
Fibroblastos , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fibroblastos/metabolismo , Estresse Oxidativo , Mutação
2.
Front Pharmacol ; 13: 1023517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506526

RESUMO

Leukotrienes are among the most potent mediators of inflammation, and inhibition of their biosynthesis, is becoming increasingly important in the treatment of many pathologies. In this work, we demonstrated that preincubation of human neutrophils with the mitochondria targeted antioxidant SkQ1 (100 nM) strongly inhibits leukotriene synthesis induced by three different stimuli: the Ca2+ ionophore A23187, the chemotactic formyl-peptide fMLP in combination with cytocholasin B, and opsonized zymosan. The SkQ1 analogue lacking the antioxidant quinone moiety (C12TPP) was ineffective, suggesting that mitochondrial production of reactive oxygen species (ROS) is critical for activating of leukotriene synthesis in human neutrophils. The uncoupler of oxidative phosphorylation FCCP also inhibits leukotriene synthesis, indicating that a high membrane potential is a prerequisite for stimulating leukotriene synthesis in neutrophils. Our data show that activation of mitogen-activated protein kinases p38 and ERK1/2, which is important for leukotriene synthesis in neutrophils is a target for SkQ1: 1) the selective p38 inhibitor SB203580 inhibited fMLP-induced leukotriene synthesis, while the ERK1/2 activation inhibitor U0126 suppressed leukotriene synthesis induced by any of the three stimuli; 2) SkQ1 effectively prevents p38 and ERK1/2 activation (accumulation of phosphorylated forms) induced by all three stimuli. This is the first study pointing to the involvement of mitochondrial reactive oxygen species in the activation of leukotriene synthesis in human neutrophils. The use of mitochondria-targeted antioxidants can be considered as a promising strategy for inhibiting leukotriene synthesis and treating various inflammatory pathologies.

3.
PeerJ ; 8: e8803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257641

RESUMO

BACKGROUND: Targeting negatively charged mitochondria is often achieved using triphenylphosphonium (TPP) cations. These cationic vehicles may possess biological activity, and a docking study indicates that TPP-moieties may act as modulators of signaling through the estrogen receptor α (ERα). Moreover, in vivo and in vitro experiments revealed the estrogen-like effects of TPP-based compounds. Here, we tested the hypothesis that TPP-based compounds regulate the activity of ERα. METHODS: We used ERa-positive and ERα-negative human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231, respectively). Cell proliferation was measured using a resazurin cell growth assay and a real-time cell analyzer assay. Cell cycle progression was analyzed using flow cytometry. Real-time PCR was used to assess mRNA expression of endogenous estrogen-responsive genes. Luciferase activity was measured to evaluate transcription driven by estrogen-responsive promoters in cells transfected with an estrogen response element (ERE)3-luciferase expression vector. RESULTS: The TPP-based molecules SkQ1 and C12TPP, as well as the rhodamine-based SkQR1, did not increase the proliferation or alter the cell cycle progression of MCF-7 cells. In contrast, 17ß estradiol increased the proliferation of MCF-7 cells and the proportion of cells in the S/G2/M-phases of the cell cycle. TPP-based compounds did not affect the induction of transcription of an ERE-luciferase expression vector in vitro, and SkQ1 did not alter the levels of expression of estrogen-dependent genes encoding GREB1, TFF1, COX6, and IGFBP4. CONCLUSION: TPP-based compounds do not possess properties typical of ERα agonists.

4.
Biochim Biophys Acta Bioenerg ; 1860(3): 181-188, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30528692

RESUMO

ATPase activity of proton-translocating FOF1-ATP synthase (F-type ATPase or F-ATPase) is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conservative of these mechanisms found in all enzymes studied so far is allosteric inhibition of ATP hydrolysis by MgADP (ADP-inhibition). When MgADP is bound without phosphate in the catalytic site, the enzyme lapses into an inactive state with MgADP trapped. In chloroplasts and mitochondria, as well as in most bacteria, phosphate prevents MgADP inhibition. However, in Escherichia coli ATP synthase ADP-inhibition is relatively weak and phosphate does not prevent it but seems to enhance it. We found that a single amino acid residue in subunit ß is responsible for these features of E. coli enzyme. Mutation ßL249Q significantly enhanced ADP-inhibition in E. coli ATP synthase, increased the extent of ATP hydrolysis stimulation by sulfite, and rendered the ADP-inhibition sensitive to phosphate in the same manner as observed in FOF1 from mitochondria, chloroplasts, and most aerobic\photosynthetic bacteria.


Assuntos
Complexos de ATP Sintetase/antagonistas & inibidores , Substituição de Aminoácidos , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Fosfatos/metabolismo , Fosfatos/farmacologia , Ligação Proteica
5.
J Cardiothorac Vasc Anesth ; 31(6): 2080-2085, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28967626

RESUMO

OBJECTIVE: To measure the release of plasma nuclear deoxyribonucleic acid (DNA) and to assess the relationship between nuclear DNA level and acute kidney injury occurrence in patients undergoing cardiac surgery. SETTING: Cardiovascular anesthesiology and intensive care unit of a large tertiary-care university hospital. DESIGN: Prospective observational study. PARTICIPANTS: Fifty adult patients undergoing cardiac surgery. INTERVENTIONS: Nuclear DNA concentration was measured in the plasma. The relationship between the level of nuclear DNA and the incidence of acute kidney injury after coronary artery bypass grafting was investigated. MEASUREMENTS AND MAIN RESULTS: Cardiac surgery leads to significant increase in plasma nuclear DNA with peak levels 12 hours after surgery (median [interquartile range] 7.0 [9.6-22.5] µg/mL). No difference was observed between off-pump and on-pump surgical techniques. Nuclear DNA was the only predictor of acute kidney injury between baseline and early postoperative risk factors. CONCLUSIONS: The authors found an increase of nuclear DNA in the plasma of patients who had undergone coronary artery bypass grafting, with a peak after 12 hours and an association of nuclear DNA with postoperative acute kidney injury.


Assuntos
Injúria Renal Aguda/sangue , Injúria Renal Aguda/diagnóstico , Ponte de Artéria Coronária/efeitos adversos , DNA/sangue , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Injúria Renal Aguda/etiologia , Idoso , Ponte de Artéria Coronária/tendências , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Complicações Pós-Operatórias/etiologia , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Risco
6.
Oxid Med Cell Longev ; 2016: 8703645, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293517

RESUMO

Rheumatoid arthritis is one of the most common autoimmune diseases. Many antioxidants have been tested in arthritis, but their efficacy was, at best, marginal. In this study, a novel mitochondria-targeted antioxidant, plastoquinonyl-decyl-triphenylphosphonium bromide (SkQ1), was tested in vivo to prevent and cure experimental autoimmune arthritis. In conventional Wistar rats, SkQ1 completely prevented the development of clinical signs of arthritis if administered with food before induction. Further, SkQ1 significantly reduced the fraction of animals that developed clinical signs of arthritis and severity of pathological lesions if administration began immediately after induction of arthritis or at the onset of first symptoms (day 14 after induction). In specific pathogen-free Wistar rats, SkQ1 administered via gavage after induction of arthritis did not reduce the fraction of animals with arthritis but decreased the severity of lesions upon pathology examination in a dose-dependent manner. Efficacious doses of SkQ1 were in the range of 0.25-1.25 nmol/kg/day (0.13-0.7 µg/kg/day), which is much lower than doses commonly used for conventional antioxidants. SkQ1 promoted apoptosis of neutrophils in vitro, which may be one of the mechanisms underlying its pharmacological activity. Considering its low toxicity and the wide therapeutic window, SkQ1 may be a valuable additional therapy for rheumatoid arthritis.


Assuntos
Antioxidantes/farmacologia , Antirreumáticos/farmacologia , Artrite Experimental/prevenção & controle , Articulações/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Linhagem Celular , Colágeno Tipo II , Relação Dose-Resposta a Droga , Humanos , Articulações/imunologia , Articulações/metabolismo , Articulações/patologia , Mitocôndrias/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Plastoquinona/farmacologia , Ratos Wistar , Fatores de Tempo
7.
PLoS One ; 8(4): e61902, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626747

RESUMO

Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H(+) ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Ionóforos de Próton/farmacologia , Prótons , 2,4-Dinitrofenol/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Cátions , Fluoresceínas/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/antagonistas & inibidores , Plastoquinona/metabolismo , Ratos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...