Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 732368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552465

RESUMO

Any large-scale spiking neuromorphic system striving for complexity at the level of the human brain and beyond will need to be co-optimized for communication and computation. Such reasoning leads to the proposal for optoelectronic neuromorphic platforms that leverage the complementary properties of optics and electronics. Starting from the conjecture that future large-scale neuromorphic systems will utilize integrated photonics and fiber optics for communication in conjunction with analog electronics for computation, we consider two possible paths toward achieving this vision. The first is a semiconductor platform based on analog CMOS circuits and waveguide-integrated photodiodes. The second is a superconducting approach that utilizes Josephson junctions and waveguide-integrated superconducting single-photon detectors. We discuss available devices, assess scaling potential, and provide a list of key metrics and demonstrations for each platform. Both platforms hold potential, but their development will diverge in important respects. Semiconductor systems benefit from a robust fabrication ecosystem and can build on extensive progress made in purely electronic neuromorphic computing but will require III-V light source integration with electronics at an unprecedented scale, further advances in ultra-low capacitance photodiodes, and success from emerging memory technologies. Superconducting systems place near theoretically minimum burdens on light sources (a tremendous boon to one of the most speculative aspects of either platform) and provide new opportunities for integrated, high-endurance synaptic memory. However, superconducting optoelectronic systems will also contend with interfacing low-voltage electronic circuits to semiconductor light sources, the serial biasing of superconducting devices on an unprecedented scale, a less mature fabrication ecosystem, and cryogenic infrastructure.

2.
Opt Express ; 28(11): 16057-16072, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549437

RESUMO

W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218 µm. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diodes (LEDs). Here we optimize the implant energy, fluence and anneal conditions to maximize the photoluminescence intensity for W centers implanted in silicon-on-insulator, a substrate suitable for waveguide-integrated devices. After optimization, we observe near two orders of magnitude improvement in photoluminescence intensity relative to the conditions with the stopping range of the implanted ions at the center of the silicon device layer. The previously demonstrated waveguide-integrated LED used implant conditions with the stopping range at the center of this layer. We further show that such light sources can be manufactured at the 300-mm scale by demonstrating photoluminescence of similar intensity from 300 mm silicon-on-insulator wafers. The luminescence uniformity across the entire wafer is within the measurement error.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...