Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146583

RESUMO

To improve the production of foot-and-mouth disease (FMD) molecular vaccines, we sought to understand the effects of the FMD virus (FMDV) 2B viroporin in an experimental, plasmid-based, virus-like particle (VLP) vaccine. Inclusion of the FMDV viroporin 2B into the human Adenovirus 5 vectored FMD vaccine enhanced transgene expression despite independent 2B expression negatively affecting cell viability. Evaluating both wildtype 2B and mutants with disrupted viroporin activity, we confirmed that viroporin activity is detrimental to overall transgene expression when expressed independently. However, the incorporation of 2B into an FMD molecular vaccine construct containing a wildtype FMDV 3C protease, a viral encoded protease responsible for processing structural proteins, resulted in enhancement of transgene expression, validating previous observations. This benefit to transgene expression was negated when using the FMDV 3CL127P mutant, which has reduced processing of host cellular proteins, a reversion resulting from 2B viroporin activity. Inclusion of 2B into VLP production constructs also adversely impacted antigen extraction, a possible side effect of 2B-dependent rearrangement of cellular membranes. These results demonstrate that inclusion of 2B enhanced transgene expression when a wildtype 3C protease is present but was detrimental to transgene expression with the 3CL127P mutant. This has implications for future molecular FMD vaccine constructs, which may utilize mutant FMDV 3C proteases.

2.
Viruses ; 14(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146682

RESUMO

Senecavirus A (SVA) is a member of the family Picornaviridae and enzootic in domestic swine. SVA can induce vesicular lesions that are clinically indistinguishable from Foot-and-mouth disease, a major cause of global trade barriers and agricultural productivity losses worldwide. The LF-BK αVß6 cell line is a porcine-derived cell line transformed to stably express an αVß6 bovine integrin and primarily used for enhanced propagation of Foot-and-mouth disease virus (FMDV). Due to the high biosecurity requirements for working with FMDV, SVA has been considered as a surrogate virus to test and evaluate new technologies and countermeasures. Herein we conducted a series of comparative evaluation in vitro studies between SVA and FMDV using the LF-BK αVß6 cell line. These include utilization of LF-BK αVß6 cells for field virus isolation, production of high virus titers, and evaluating serological reactivity and virus susceptibility to porcine type I interferons. These four methodologies utilizing LF-BK αVß6 cells were applicable to research with SVA and results support the current use of SVA as a surrogate for FMDV.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Interferon Tipo I , Picornaviridae , Doenças dos Suínos , Animais , Bovinos , Linhagem Celular , Integrinas , Suínos
3.
Viruses ; 14(5)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35632734

RESUMO

RNA viruses, such as foot-and-mouth disease virus (FMDV), have error-prone replication resulting in the continuous emergence of new viral strains capable of evading current vaccine coverage. Vaccine formulations must be regularly updated, which is both costly and technically challenging for many vaccine platforms. In this report, we describe a plasmid-based virus-like particle (VLP) production platform utilizing transiently transfected mammalian cell cultures that combines both the rapid response adaptability of nucleic-acid-based vaccines with the ability to produce intact capsid epitopes required for immunity. Formulated vaccines which employed this platform conferred complete protection from clinical foot-and-mouth disease in both swine and cattle. This novel platform can be quickly adapted to new viral strains and serotypes through targeted exchanges of only the FMDV capsid polypeptide nucleic acid sequences, from which processed structural capsid proteins are derived. This platform obviates the need for high biocontainment manufacturing facilities to produce inactivated whole-virus vaccines from infected mammalian cell cultures, which requires upstream expansion and downstream concentration of large quantities of live virulent viruses.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Proteínas do Capsídeo/metabolismo , Bovinos , Técnicas de Cultura de Células , Mamíferos , Suínos , Vacinas de Produtos Inativados , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...