Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893739

RESUMO

Bonded permanent NdFeB magnets are useful in numerous applications, including electric vehicles, and the demand is steadily increasing. A major drawback is corrosion due to inadequate wetting of the magnetic particles by liquid polymers such as polyphenylene sulfide or polyamide. Recently reported methods for corrosion inhibition are summarized, and their applicability is critically evaluated. The phosphorylation of magnetic particles inhibits corrosion but does not enable appropriate properties in harsh environments. The same applies to metallic coatings, which usually contain aluminum and zinc. Advanced epoxy adhesives are a promising solution, although some authors have reported inadequate corrosion resistance. The application of composite coatings seems like an appropriate solution, but the exact mechanisms are yet to be studied.

2.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921899

RESUMO

Carbon deposits consisting of vertically oriented multilayer graphene sheets on metallic foils represent an interesting alternative to activated carbon in electrical and electrochemical devices such as super-capacitors because of the superior electrical conductivity of graphene and huge surface-mass ratio. The graphene sheets were deposited on cobalt foils by plasma-enhanced chemical vapor deposition using propane as the carbon precursor. Plasma was sustained by an inductively coupled radiofrequency discharge in the H mode at a power of 500 W and a propane pressure of 17 Pa. The precursor effectively dissociated in plasma conditions and enabled the growth of porous films consisting of multilayer graphene sheets. The deposition rate varied with time and peaked at 100 nm/s. The evolution of surface wettability was determined by the sessile drop method. The untreated substrates were moderately hydrophobic at a water contact angle of about 110°. The contact angle dropped to about 50° after plasma treatment for less than a second and increased monotonously thereafter. The maximal contact angle of 130° appeared at a treatment time of about 30 s. Thereafter, it slowly decreased, with a prolonged deposition time. The evolution of the wettability was explained by surface composition and morphology. A brief treatment with oxygen plasma enabled a super-hydrophilic surface finish of the films consisting of multilayer graphene sheets.

3.
Materials (Basel) ; 17(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793342

RESUMO

This study presents a novel approach for improving the interfacial adhesion between Nd-Fe-B spherical magnetic powders and polyamide 12 (PA12) in polymer-bonded magnets using plasma treatments. By applying radio frequency plasma to the magnetic powder and low-pressure microwave plasma to PA12, we achieved a notable enhancement in the mechanical and environmental stability of fused deposition modeling (FDM)-printed Nd-Fe-B/PA12 magnets. The densities of the FDM-printed materials ranged from 92% to 94% of their theoretical values, with magnetic remanence (Br) ranging from 85% to 89% of the theoretical values across all batches. The dual plasma-treated batch demonstrated an optimal mechanical profile with an elastic modulus of 578 MPa and the highest ductility at 21%, along with a tensile strength range of 6 to 7 MPa across all batches. Flexural testing indicated that this batch also achieved the highest flexural strength of 15 MPa with a strain of 5%. Environmental stability assessments confirmed that applied plasma treatments did not compromise resistance to corrosion, evidenced by negligible flux loss in both hygrothermal and bulk corrosion tests. These results highlight plasma treatment's potential to enhance mechanical strength, magnetic performance, and environmental stability.

4.
Polymers (Basel) ; 16(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38794574

RESUMO

The wettability of polymers is usually inadequate to ensure the appropriate spreading of polar liquids and thus enable the required adhesion of coatings. A standard ecologically benign method for increasing the polymer wettability is a brief treatment with a non-equilibrium plasma rich in reactive oxygen species and predominantly neutral oxygen atoms in the ground electronic state. The evolution of the surface wettability of selected aromatic polymers was investigated by water droplet contact angles deposited immediately after exposing polymer samples to fluxes of oxygen atoms between 3 × 1020 and 1 × 1023 m-2s-1. The treatment time varied between 0.01 and 1000 s. The wettability evolution versus the O-atom fluence for all aromatic polymers followed similar behavior regardless of the flux of O atoms or the type of polymer. In the range of fluences between approximately 5 × 1020 and 5 × 1023 m-2, the water contact angle decreased exponentially with increasing fluence and dropped to 1/e of the initial value after receiving the fluence close to 5 × 1022 m-2.

5.
Materials (Basel) ; 17(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612009

RESUMO

In this study, recent advances in tailoring the surface properties of polymers for the optimization of the adhesion of various coatings by non-equilibrium gaseous plasma are reviewed, and important findings are stressed. Different authors have used various experimental setups and reported results that scatter significantly and are sometimes contradictory. The correlations between the processing parameters and the adhesion are drawn, and discrepancies are explained. Many authors have explained improved adhesion with the adjustment of the surface free energy or wettability of the polymer substrate and the surface tension of liquids used for the deposition of thin films. The adhesion force between the polymer substrate and the coating does not always follow the evolution of the surface wettability, which is explained by several effects, including the aging effects due to the hydrophobic recovery and the formation of an interlayer rich in loosely bonded low molecular weight fragments.

6.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543394

RESUMO

Cellulose is an abundant natural polymer and is thus promising for enforcing biobased plastics. A broader application of cellulose fibers as a filler in polymer composites is limited because of their hydrophilicity and hygroscopicity. The recent scientific literature on plasma methods for the hydrophobization of cellulose materials is reviewed and critically evaluated. All authors focused on the application of plasmas sustained in fluorine or silicon-containing gases, particularly tetrafluoromethane, and hexamethyldisiloxane. The cellulose materials should be pre-treated with another plasma (typically oxygen) for better adhesion of the silicon-containing hydrophobic coating. In contrast, deposition of fluorine-containing coatings does not require pre-treatment, which is explained by mild etching of the cellulose upon treatment with F atoms and ions. The discrepancy between the results reported by different authors is explained by details in the gas phase and surface kinetics, including the heating of samples due to exothermic surface reactions, desorption of water vapor, competition between etching and deposition, the influence of plasma radiation, and formation of dusty plasma. Scientific and technological challenges are highlighted, and the directions for further research are provided.

7.
Environ Int ; 182: 108285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972530

RESUMO

Water scarcity, one of the most pressing challenges we face today, has developed for many reasons, including the increasing number of waterborne pollutants that affect the safety of the water environment. Waterborne human, animal and plant viruses represent huge health, environmental, and financial burden and thus it is important to efficiently inactivate them. Therefore, the main objective of this study was to construct a unique device combining plasma with supercavitation and to evaluate its efficiency for water decontamination with the emphasis on inactivation of viruses. High inactivation (>5 log10 PFU/mL) of bacteriophage MS2, a human enteric virus surrogate, was achieved after treatment of 0.43 L of recirculating water for up to 4 min. The key factors in the inactivation were short-lived reactive plasma species that damaged viral RNA. Water treated with plasma for a short time required for successful virus inactivation did not cause cytotoxic effects in the in vitro HepG2 cell model system or adverse effects on potato plant physiology. Therefore, the combined plasma-supercavitation device represents an environmentally-friendly technology that could provide contamination-free and safe water.


Assuntos
Gases em Plasma , Vírus , Animais , Humanos , Água , Gases em Plasma/farmacologia , Inativação de Vírus
8.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687497

RESUMO

Calorimetry is a commonly used method in plasma characterization, but the accuracy of the method is tied to the accuracy of the recombination coefficient, which in turn depends on a number of surface effects. Surface effects also govern the kinetics in advanced methods such as atomic layer oxidation of inorganic materials and functionalization of organic materials. The flux of the reactive oxygen atoms for the controlled oxidation of such materials depends on the recombination coefficient of materials placed into the reaction chamber, which in turn depends on the surface morphology, temperature, and pressure in the processing chamber. The recombination coefficient of a well-oxidized cobalt surface was studied systematically in a range of temperatures from 300 to 800 K and pressures from 40 to 200 Pa. The coefficient increased monotonously with decreasing pressure and increasing temperature. The lowest value was about 0.05, and the highest was about 0.30. These values were measured for cobalt foils previously oxidized with oxygen plasma at the temperature of 1300 K. The oxidation caused a rich morphology with an average roughness as deduced from atomic force images of 0.9 µm. The results were compared with literature data, and the discrepancy between results reported by different authors was explained by taking into account the peculiarities of their experimental conditions.

9.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047840

RESUMO

In this study, we applied an inductively coupled, radio frequency oxygen plasma to maize seeds and investigated its effects on seedling emergence, plant number at tasseling, and crop yield of maize in realistic field conditions. Maize seeds of seven different hybrids were treated over two harvest years. In addition to plasma-treated seeds, a control sample, fungicide-treated seeds, an eco-layer, and a plasma and eco-layer combination, were planted. Seedling emergence, plant number at tasseling (plants/m2), and yield (kg/ha), were recorded. In the first harvest year, results were negatively affected by the presence of an insect pest. In the second harvest year, plant number and yield results were more uniform. In both years, for two and three hybrids, respectively, the highest yield arose from plants from plasma-treated seeds, but the differences were only partially significant. Considering our results, plasma treatment of maize seeds appears to have a positive effect on the yield of the plant.


Assuntos
Germinação , Controle de Insetos , Oxigênio , Gases em Plasma , Sementes , Zea mays , Germinação/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Gases em Plasma/farmacologia , Oxigênio/farmacologia
10.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902889

RESUMO

Relevant data on heterogeneous surface recombination of neutral oxygen atoms available in the scientific literature are reviewed and discussed for various materials. The coefficients are determined by placing the samples either in non-equilibrium oxygen plasma or its afterglow. The experimental methods used to determine the coefficients are examined and categorized into calorimetry, actinometry, NO titration, laser-induced fluorescence, and various other methods and their combinations. Some numerical models for recombination coefficient determination are also examined. Correlations are drawn between the experimental parameters and the reported coefficients. Different materials are examined and categorized according to reported recombination coefficients into catalytic, semi-catalytic, and inert materials. Measurements from the literature of the recombination coefficients for some materials are compiled and compared, along with the possible system pressure and material surface temperature dependence of the materials' recombination coefficient. A large scattering of results reported by different authors is discussed, and possible explanations are provided.

11.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501716

RESUMO

Polyetheretherketone (PEEK) is the material of choice in several applications ranging from the automotive industry to medicine, but the surface properties are usually not adequate. A standard method for tailoring surface properties is the application of gaseous plasma. The surface finish depends enormously on the processing parameters. This article presents a review of strategies adapted for improved wettability and adhesion of PEEK. The kinetics of positively charged ions, neutral reactive plasma species, and vacuum ultraviolet radiation on the surface finish are analyzed, and synergies are stressed where appropriate. The reviewed articles are critically assessed regarding the plasma and surface kinetics, and the surface mechanisms are illustrated. The directions for obtaining optimal surface finish are provided together with the scientific explanation of the limitations of various approaches. Super-hydrophilic surface finish is achievable by treatment with a large dose of vacuum ultraviolet radiation in the presence of oxidizing gas. Bombardment with positively charged ions of kinetic energy between about 100 and 1000 eV also enable high wettability, but one should be aware of excessive heating when using the ions.

12.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558196

RESUMO

Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma-textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead to the appropriate surface finish of fibers inside the textile. The crucial relations are provided, and the different concepts of low-pressure and atmospheric-pressure discharges useful for the modification of textile's properties are explained. The atmospheric-pressure plasma sustained in the form of numerous stochastical streamers will penetrate textiles of reasonable porosity, so the reactive species useful for the functionalization of fibers deep inside the textile will be created inside the textile. Low-pressure plasmas sustained at reasonable discharge power will not penetrate into the textile, so the depth of the modified textile is limited by the diffusion of reactive species. Since the charged particles neutralize on the textile surface, the neutral species will functionalize the fibers deep inside the textile when low-pressure plasma is chosen for the treatment of textiles.

13.
Polymers (Basel) ; 14(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35746070

RESUMO

Oxygen plasma is widely used for enhancing the wettability of numerous polymers, including polyethylene terephthalate (PET). The treatment with plasma containing oxygen will cause surface functionalization with polar functional groups, which will, in turn, improve the wettability. However, the exact mechanisms leading to the hydrophilic or even super-hydrophilic surface finish are still insufficiently explored. The wettability obtained by plasma treatment is not permanent, since the hydrophobic recovery is usually reported. The mechanisms of hydrophobic recovery are reviewed and explained. Methods for suppressing this effect are disclosed and explained. The recommended treatment which assures stable hydrophilicity of PET samples is the treatment with energetic ions and/or vacuum ultraviolet radiation (VUV). The influence of various plasma species on the formation of the highly hydrophilic surface finish and stability of adequate wettability of PET materials is discussed.

14.
Plants (Basel) ; 11(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35736703

RESUMO

Seeds of wheat cultivar Bologna were treated with a low-pressure, inductively coupled, radio frequency oxygen plasma. E-mode and H-mode plasma at the real powers of 25 and 275 W, respectively, was used at treatment times of 0.1-300 s. Plasma affected seed surface chemistry, determined by XPS, and surface topography, visualized by SEM. The combined effects of functionalization and etching modified seed surface wettability. The water contact angle (WCA) exponentially decreased with treatment time and correlated with the product of discharge power and treatment time well. Super-hydrophilicity was seen at a few 1000 Ws, and the necessary condition was over 35 at.% of surface oxygen. Wettability also correlated well with O-atom dose, where super-hydrophilicity was seen at 1024-1025 m-2. A relatively high germination percentage was seen, up to 1000 Ws (O-atom dose 1023-1024 m-2), while seed viability remained unaffected only up to about 100 Ws. Extensively long treatments decreased germination percentage and viability.

15.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055262

RESUMO

Carbon nanowalls are promising materials for various electrochemical devices due to their chemical inertness, desirable electrical conductivity, and excellent surface-to-mass ratio. Standard techniques, often based on plasma-assisted deposition using gaseous precursors, enable the synthesis of top-quality carbon nanowalls, but require long deposition times which represents a serious obstacle for mass applications. Here, an alternative deposition technique is presented. The carbon nanowalls were synthesized on titanium substrates using various polymers as solid precursors. A solid precursor and the substrate were mounted into a low-pressure plasma reactor. Plasma was sustained by an inductively coupled radiofrequency discharge in the H-mode at the power of 500 W. Spontaneous growth of carbon nanomaterials was observed for a variety of polymer precursors. The best quality of carbon nanowalls was obtained using aliphatic polyolefins. The highest growth rate of a thin film of carbon nanowalls of about 200 nm/s was observed. The results were explained by different degradation mechanisms of polymers upon plasma treatment and the surface kinetics.

16.
Interface Focus ; 12(1): 20210042, 2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-34956610

RESUMO

There is an unprecedented concern regarding the viral strain SARS-CoV-2 and especially its respiratory disease more commonly known as COVID-19. SARS-CoV-2 virus has the ability to survive on different surfaces for extended periods, ranging from days up to months. The new infectious properties of SARS-CoV-2 vary depending on the properties of fomite surfaces. In this review, we summarize the risk factors involved in the indirect transmission pathways of SARS-CoV-2 strains on fomite surfaces. The main mode of indirect transmission is the contamination of porous and non-porous inanimate surfaces such as textile surfaces that include clothes and most importantly personal protective equipment like personal protective equipment kits, masks, etc. In the second part of the review, we highlight materials and processes that can actively reduce the SARS-CoV-2 surface contamination pattern and the associated transmission routes. The review also focuses on some general methodologies for designing advanced and effective antiviral surfaces by physical and chemical modifications, viral inhibitors, etc.

17.
Polymers (Basel) ; 13(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883744

RESUMO

Modification and functionalization of polymer surface properties is desired in numerous applications, and a standard technique is a treatment with non-equilibrium gaseous plasma. Fluorinated polymers exhibit specific properties and are regarded as difficult to functionalize with polar functional groups. Plasma methods for functionalization of polyvinylidene fluoride (PVDF) are reviewed and different mechanisms involved in the surface modification are presented and explained by the interaction of various reactive species and far ultraviolet radiation. Most authors used argon plasma but reported various results. The discrepancy between the reported results is explained by peculiarities of the experimental systems and illustrated by three mechanisms. More versatile reaction mechanisms were reported by authors who used oxygen plasma for surface modification of PVDF, while plasma sustained in other gases was rarely used. The results reported by various authors are analyzed, and correlations are drawn where feasible. The processing parameters reported by different authors were the gas pressure and purity, the discharge configuration and power, while the surface finish was predominantly determined by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). A reasonably good correlation was found between the surface wettability as probed by WCA and the oxygen concentration as probed by XPS, but there is hardly any correlation between the discharge parameters and the wettability.

18.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948120

RESUMO

According to the World Health Organization, the contamination of crops with aflatoxins poses a significant economic burden, estimated to affect 25% of global food crops. In the event that the contaminated food is processed, aflatoxins enter the general food supply and can cause serious diseases. Aflatoxins are distributed unevenly in food or feedstock, making eradicating them both a scientific and a technological challenge. Cooking, freezing, or pressurizing have little effect on aflatoxins. While chemical methods degrade toxins on the surface of contaminated food, the destruction inside entails a slow process. Physical techniques, such as irradiation with ultraviolet photons, pulses of extensive white radiation, and gaseous plasma, are promising; yet, the exact mechanisms concerning how these techniques degrade aflatoxins require further study. Correlations between the efficiency of such degradation and the processing parameters used by various authors are presented in this review. The lack of appropriate guidance while interpreting the observed results is a huge scientific challenge.


Assuntos
Aflatoxinas/química , Produtos Agrícolas , Descontaminação , Contaminação de Alimentos/prevenção & controle , Gases em Plasma/química , Humanos
19.
Polymers (Basel) ; 13(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960856

RESUMO

The biocompatibility of body implants made from polytetrafluoroethylene (PTFE) is inadequate; therefore, the surface should be grafted with biocompatible molecules. Because PTFE is an inert polymer, the adhesion of the biocompatible film may not be appropriate. Therefore, the PFTE surface should be modified to enable better adhesion, preferably by functionalization with amino groups. A two-step process for functionalization of PTFE surface is described. The first step employs inductively coupled hydrogen plasma in the H-mode and the second ammonia plasma. The evolution of functional groups upon treatment with ammonia plasma in different modes is presented. The surface is saturated with nitrogen groups within a second if ammonia plasma is sustained in the H-mode at the pressure of 35 Pa and forward power of 200 W. The nitrogen-rich surface film persists for several seconds, while prolonged treatment causes etching. The etching is suppressed but not eliminated using pulsed ammonia plasma at 35 Pa and 200 W. Ammonia plasma in the E-mode at the same pressure, but forward power of 25 W, causes more gradual functionalization and etching was not observed even at prolonged treatments up to 100 s. Detailed investigation of the XPS spectra enabled revealing the surface kinetics for all three cases.

20.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206400

RESUMO

Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.


Assuntos
Germinação/efeitos dos fármacos , Phaseolus/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento , Gases em Plasma/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Espectroscopia Fotoeletrônica , Desenvolvimento Vegetal/efeitos dos fármacos , Sementes/ultraestrutura , Propriedades de Superfície , Água , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...