Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(36): 24761-24769, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671503

RESUMO

Capacity retention is a critical property to enhance in electrochemical storage systems applied to renewable energy. In lithium-sulfur (Li-S) batteries, the capacity fade resulting from the shuttle effect of polysulfides is a major obstacle to their practical application. Sepiolite, an eco-friendly earth-abundant clay with suitable surface chemistry for anchoring and retaining various molecules and structures, was studied as a cathode additive to mitigate the shuttle effect using experimental and theoretical approaches. Electrochemical measurements, spectroscopy, and ab initio calculations were performed to describe the mechanism and interfaces involved in polysulfide retention using 2 wt% of sepiolite as an additive in Li-S batteries. The results showed that the addition of sepiolite significantly improved the capacity retention during battery cycling. Spectroscopic analysis revealed that the effective sepiolite-polysulfide interface was governed by oxidized sulfur species. Additionally, ab initio studies showed a highly exothermic adsorption both inside and outside the sepiolite pore. This study demonstrates the potential use of eco-friendly, low-cost, non-toxic, natural, and abundant materials as additives to increase capacity retention.

2.
Microbiol Resour Announc ; 12(5): e0002123, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37039639

RESUMO

We report the complete genome sequence of Burkholderia ambifaria strain Q53, an environmental rhizobacterium isolated from the rhizosphere of peanut plants. The genome consists of 7.4 Mbp distributed into three circular chromosomes and was determined using a hybrid long- and short-read assembly approach.

3.
J Basic Microbiol ; 63(6): 646-657, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36737831

RESUMO

Bacterial surface components and extracellular compounds such as exopolysaccharides (EPSs) are crucial for interactions between cells, tolerance to different types of stress, and host colonization. Sinorhizobium meliloti produces two EPSs: Succinoglycan (EPS I), which is involved in the establishment of symbiosis with Medicago sativa, and galactoglucan (EPS II), associated with biofilm formation and the promotion of aggregation. Here, we aimed to assess their role in aggregative interactions between cells of the same strain of a given species (auto-aggregation), and between genetically different strains of the same or different species (intra- or intergeneric coaggregation). To do this, we used S. meliloti mutants which are defective in the production of EPS I, EPS II, or both. Macroscopic and microscopic coaggregation tests were performed with combinations or pairs of different bacterial strains. The EPS II-producing strains were more capable of coaggregation than those that cannot produce EPS II. This was true both for coaggregations between different S. meliloti strains, and between S. meliloti and other common rhizobacteria of agricultural relevance, such as Pseudomonas fluorescens and Azospirillum brasilense. The exogenous addition of EPS II strongly promoted coaggregation, thus confirming the polymer's importance for this phenotype. EPS II may therefore be a key factor in events of physiological significance for environmental survival, such as aggregative interactions and biofilm development. Furthermore, it might be a connecting molecule with relevant properties at an ecological, biotechnological, and agricultural level.


Assuntos
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Regulação Bacteriana da Expressão Gênica , Biofilmes , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Simbiose/genética , Polissacarídeos Bacterianos , Proteínas de Bactérias/genética
4.
Microbiol Resour Announc ; 11(11): e0077922, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36287006

RESUMO

We report the complete genome sequence of Mesorhizobium ciceri strain R30, a rhizobium strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of almost 7 Mb, distributed into two circular replicons: a chromosome of 6.49 Mb and a plasmid of 0.46 Mb.

5.
Phys Chem Chem Phys ; 23(5): 3281-3289, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33506828

RESUMO

Complex materials composed of two and three elements with high Li-ion storage capacity are investigated and tested as lithium-ion battery (LiB) negative electrodes. Namely, anodes containing tin, silicon, and graphite show very good performance because of the large gravimetric and volumetric capacity of silicon and structural support provided by tin and graphite. The performance of the composites during the first cycles was studied using ex situ magic angle spinning (MAS) 7Li Nuclear Magnetic Resonance (NMR), density functional theory (DFT) calculations, and electrochemical techniques. The best performance was obtained for Sn/Si/graphite in a 1 : 1 : 1 proportion, due to an emergent effect of the interaction between Sn and Si. The results suggest a stabilization effect of Sn over Si, providing a physical constraint that prevents Si pulverization. This mechanism ensures good cyclability over more than one hundred cycles, low capacity fading and high specific capacity.

6.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1080-1091, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135679

RESUMO

Carbohydrate-lectin interactions are involved in important cellular recognition processes, including viral and bacterial infections, inflammation and tumor metastasis. Hence, structural studies of lectin-synthetic glycan complexes are essential for understanding lectin-recognition processes and for the further design of promising chemotherapeutics that interfere with sugar-lectin interactions. Plant lectins are excellent models for the study of the molecular-recognition process. Among them, peanut lectin (PNA) is highly relevant in the field of glycobiology because of its specificity for ß-galactosides, showing high affinity towards the Thomsen-Friedenreich antigen, a well known tumor-associated carbohydrate antigen. Given this specificity, PNA is one of the most frequently used molecular probes for the recognition of tumor cell-surface O-glycans. Thus, it has been extensively used in glycobiology for inhibition studies with a variety of ß-galactoside and ß-lactoside ligands. Here, crystal structures of PNA are reported in complex with six novel synthetic hydrolytically stable ß-N- and ß-S-galactosides. These complexes disclosed key molecular-binding interactions of the different sugars with PNA at the atomic level, revealing the roles of specific water molecules in protein-ligand recognition. Furthermore, binding-affinity studies by isothermal titration calorimetry showed dissociation-constant values in the micromolar range, as well as a positive multivalency effect in terms of affinity in the case of the divalent compounds. Taken together, this work provides a qualitative structural rationale for the upcoming synthesis of optimized glycoclusters designed for the study of lectin-mediated biological processes. The understanding of the recognition of ß-N- and ß-S-galactosides by PNA represents a benchmark in protein-carbohydrate interactions since they are novel synthetic ligands that do not belong to the family of O-linked glycosides.


Assuntos
Galactosídeos , Modelos Moleculares , Aglutinina de Amendoim , Galactosídeos/química , Ligantes , Aglutinina de Amendoim/química , Ligação Proteica
7.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105680

RESUMO

Sinorhizobium meliloti is a soil bacterium of great agricultural importance because of its ability to fix atmospheric nitrogen in symbiotic association with alfalfa (Medicago sativa) roots. We looked into the involvement of exopolysaccharides (EPS) in its survival when exposed to different environmental stressors, as well as in bacteria-bacteria and bacteria-substrate interactions. The strains used were wild-type Rm8530 and two strains that are defective in the biosynthesis of EPS II: wild-type Rm1021, which has a non-functional expR locus, and mutant Rm8530 expA. Under stress by water deficiency, Rm8530 remained viable and increased in number, whereas Rm1021 and Rm8530 expA did not. These differences could be due to Rm8530's ability to produce EPS II. Survival experiments under saline stress showed that viability was reduced for Rm1021 but not for Rm8530 or Rm8530 expA, which suggests the existence of some regulating mechanism dependent on a functional expR that is absent in Rm1021. The results of salinity-induced stress assays regarding biofilm-forming capacity (BFC) and autoaggregation indicated the protective role of EPS II. As a whole, our observations demonstrate that EPS play major roles in rhizobacterial survival.


Assuntos
Proteínas de Bactérias/metabolismo , Medicago sativa/microbiologia , Fixação de Nitrogênio/fisiologia , Raízes de Plantas/microbiologia , Estresse Salino/fisiologia , Sinorhizobium meliloti/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Mutação , Nitrogênio/metabolismo , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium meliloti/classificação , Sinorhizobium meliloti/genética , Simbiose/fisiologia , Água
8.
J Phys Chem Lett ; 11(7): 2775-2780, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32183510

RESUMO

During the screening of active materials (AMs) for lithium-ion batteries, the solid-state lithium diffusion coefficient (DLi) is one of the most relevant descriptors used to evaluate the relevance of an AM candidate. However, for a given compound, the DLi values reported in literature span over several orders of magnitude. Therefore, through the case study of LiNi1/3Mn1/3Co1/3O2 cathode AM, new physical insights are provided to explain the dispersion of DLi values obtained through galvanostatic intermittent titration technique (GITT) . For the first time, a 3D electrochemical model (accounting for the carbon-binder domain) fed with experimental inputs is capable of highlighting the limitations of the most widely used equation for deriving DLi. Through our model, we show that these limitations arise from the influence of the carbon-binder domain location throughout the electrode and the non-homogeneous AM phasedistribution and particle size.

9.
Arch Microbiol ; 202(2): 391-398, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31680188

RESUMO

Bacterial surface molecules have an important role in the rhizobia-legume symbiosis. Ensifer meliloti (previously, Sinorhizobium meliloti), a symbiotic Gram-negative rhizobacterium, produces two different exopolysaccharides (EPSs), termed EPS I (succinoglycan) and EPS II (galactoglucan), with different functions in the symbiotic process. Accordingly, we undertook a study comparing the potential differences in alfalfa nodulation by E. meliloti strains with differences in their EPSs production. Strains recommended for inoculation as well as laboratory strains and native strains isolated from alfalfa fields were investigated. This study concentrated on EPS-II production, which results in mucoid colonies that are dependent on the presence of an intact expR gene. The results revealed that although the studied strains exhibited different phenotypes, the differences did not affect alfalfa nodulation itself. However, subtle changes in timing and efficacy to the effects of inoculation with the different strains may result because of other as-yet unknown factors. Thus, additional research is needed to determine the most effective inoculant strains and the best conditions for improving alfalfa production under agricultural conditions.


Assuntos
Galactanos/metabolismo , Glucanos/metabolismo , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Fertilizantes/microbiologia , Regulação Bacteriana da Expressão Gênica , Nodulação/fisiologia , Simbiose/fisiologia
10.
Microb Ecol ; 79(4): 1044-1053, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31828388

RESUMO

We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1-6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (-ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4-6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.


Assuntos
Proteínas de Bactérias/genética , Clima , Mutação , Nitrato Redutases/genética , Óxido Nitroso/metabolismo , Sinorhizobium meliloti/fisiologia , Sequência de Aminoácidos , Argentina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Nitrato Redutases/química , Nitrato Redutases/metabolismo , Filogenia , Alinhamento de Sequência , Sinorhizobium meliloti/genética
11.
ACS Appl Mater Interfaces ; 10(28): 23501-23508, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29985579

RESUMO

We report the first optical biosensor for the novel and important cardiac biomarker, galectin-3 (Gal3), using the anti-Gal3 antibody as a biorecognition element and surface plasmon resonance (SPR) for transducing the bioaffinity event. The immunosensing platform was built at a thiolated Au surface modified by self-assembling four bilayers of poly(diallyldimethylammonium chloride) and graphene oxide (GO), followed by the covalent attachment of 3-aminephenylboronic acid (3ABA). The importance of GO, both as the anchoring point of the antibody and as a field enhancer for improving the biosensor sensitivity, was critically discussed. The advantages of using 3ABA to orientate the anti-Gal3 antibody through the selective link to the Fc region were also demonstrated. The new platform represents an interesting alternative for the label-free biosensing of Gal3 in the whole range of clinically relevant concentrations (linear range between 10.0 and 50.0 ng mL-1, detection limit of 2.0 ng mL-1) with successful application for Gal3 biosensing in enriched human serum samples.


Assuntos
Ressonância de Plasmônio de Superfície , Biomarcadores , Técnicas Biossensoriais , Galectina 3 , Ouro , Grafite , Humanos , Imunoensaio
12.
Genome Announc ; 6(10)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29519839

RESUMO

Here, we report the draft genome sequence of Methylobacterium sp. strain V23, a bacterium isolated from accretion ice of the subglacial Lake Vostok (3,592 meters below the surface). This genome makes possible the study of ancient and psychrophilic genes and proteins from a subglacial environment isolated from the surface for at least 15 million years.

13.
Biochem Mol Biol Educ ; 46(1): 83-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29131507

RESUMO

The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018.


Assuntos
Parede Celular/química , Parede Celular/metabolismo , Simulação por Computador , Muramidase/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Configuração de Carboidratos , Laboratórios , Micrococcus luteus/química , Micrococcus luteus/citologia , Peptidoglicano/química , Peptidoglicano/metabolismo , Ensino
14.
Microbiology (Reading) ; 163(9): 1343-1354, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28791946

RESUMO

Pseudomonasaeruginosa uses choline as a source of carbon and nitrogen, and also for the synthesis of glycine betaine, an osmoprotectant under stress conditions such as drought and salinity. The transcription factor GbdR is the specific regulator of choline metabolism and it belongs to the Arac/XylS family of transcriptional regulators. Despite the link between choline catabolism and bacterial pathogenicity, gbdR regulation has not been explored in detail. In the present work, we describe how gbdR transcription can be initiated from a σ54-dependent promoter. gbdR transcription can be activated by NtrC in the absence of a preferential nitrogen source, by CbrB in the absence of a preferential carbon source, and by the integration host factor favouring DNA bending. In addition, we found that BetI negatively regulates gbdR expression in the absence of choline. We identified two overlapping BetI binding sites in the gbdR promoter sequence, providing an additional example of σ54-promoter down-regulation. Based on our findings, we propose a model for gdbR regulation and its impact on choline metabolism.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transcrição Gênica , Fatores Hospedeiros de Integração/metabolismo , Mutação , Ligação Proteica
15.
Bioelectrochemistry ; 99: 8-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24951898

RESUMO

We report the quantification of promethazine (PMZ) using glassy carbon electrodes (GCE) modified with bamboo-like multi-walled carbon nanotubes (bCNT) dispersed in double stranded calf-thymus DNA (dsDNA) (GCE/bCNT-dsDNA). Cyclic voltammetry measurements demonstrated that PMZ presents a thin film-confined redox behavior at GCE/bCNT-dsDNA, opposite to the irreversibly-adsorbed behavior obtained at GCE modified with bCNT dispersed in ethanol (GCE/bCNT). Differential pulse voltammetry-adsorptive stripping with medium exchange experiments performed with GCE/bCNT-dsDNA and GCE modified with bCNTs dispersed in single-stranded calf-thymus DNA (ssDNA) confirmed that the interaction between PMZ and bCNT-dsDNA is mainly hydrophobic. These differences are due to the intercalation of PMZ within the dsDNA that supports the bCNTs, as evidenced from the bathochromic displacement of UV-Vis absorption spectra of PMZ and quantum dynamics calculations at DFTB level. The efficient accumulation of PMZ at GCE/bCNT-dsDNA made possible its sensitive quantification at nanomolar levels (sensitivity: (3.50±0.05)×10(8) µA·cm(-2)·M(-1) and detection limit: 23 nM). The biosensor was successfully used for the determination of PMZ in a pharmaceutical product with excellent correlation.


Assuntos
Antialérgicos/análise , Técnicas Biossensoriais/instrumentação , DNA/química , Nanotubos de Carbono/química , Prometazina/análise , Animais , Bovinos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Limite de Detecção , Modelos Moleculares
16.
Microbiology (Reading) ; 160(Pt 2): 406-417, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275100

RESUMO

The exopolyphosphatase (Ppx) of Pseudomonas aeruginosa is encoded by the PA5241 gene (ppx). Ppx catalyses the hydrolysis of inorganic polyphosphates to orthophosphate (Pi). In the present work, we identified and characterized the promoter region of ppx and its regulation under environmental stress conditions. The role of Ppx in the production of several virulence factors was demonstrated through studies performed on a ppx null mutant. We found that ppx is under the control of two interspaced promoters, dually regulated by nitrogen and phosphate limitation. Under nitrogen-limiting conditions, its expression was controlled from a σ(54)-dependent promoter activated by the response regulator NtrC. However, under Pi limitation, the expression was controlled from a σ(70) promoter, activated by PhoB. Results obtained from the ppx null mutant demonstrated that Ppx is involved in the production of virulence factors associated with both acute infection (e.g. motility-promoting factors, blue/green pigment production, C6-C12 quorum-sensing homoserine lactones) and chronic infection (e.g. rhamnolipids, biofilm formation). Molecular and physiological approaches used in this study indicated that P. aeruginosa maintains consistently proper levels of Ppx regardless of environmental conditions. The precise control of ppx expression appeared to be essential for the survival of P. aeruginosa and the occurrence of either acute or chronic infection in the host.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Hidrolases Anidrido Ácido/genética , Deleção de Genes , Estresse Fisiológico
17.
Colloids Surf B Biointerfaces ; 108: 329-36, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23563301

RESUMO

We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT.


Assuntos
DNA/química , Técnicas Eletroquímicas/instrumentação , Guanina/química , Peróxido de Hidrogênio/química , Nanotubos de Carbono/química , Animais , Bovinos , Eletrodos , Oxirredução , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...