Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 10(3): e0119927, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790188

RESUMO

Our ability to engineer organisms with new biosynthetic pathways and genetic circuits is limited by the availability of protein characterization data and the cost of synthetic DNA. With new tools for reading and writing DNA, there are opportunities for scalable assays that more efficiently and cost effectively mine for biochemical protein characteristics. To that end, we have developed the Multiplex Library Synthesis and Expression Correction (MuLSEC) method for rapid assembly, error correction, and expression characterization of many genes as a pooled library. This methodology enables gene synthesis from microarray-synthesized oligonucleotide pools with a one-pot technique, eliminating the need for robotic liquid handling. Post assembly, the gene library is subjected to an ampicillin based quality control selection, which serves as both an error correction step and a selection for proteins that are properly expressed and folded in E. coli. Next generation sequencing of post selection DNA enables quantitative analysis of gene expression characteristics. We demonstrate the feasibility of this approach by building and testing over 90 genes for empirical evidence of soluble expression. This technique reduces the problem of part characterization to multiplex oligonucleotide synthesis and deep sequencing, two technologies under extensive development with projected cost reduction.


Assuntos
DNA/genética , Genes Sintéticos , Oligonucleotídeos/genética , Biossíntese de Proteínas/genética , DNA/síntese química , Escherichia coli/genética , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/biossíntese
3.
ACS Synth Biol ; 4(7): 833-41, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25621860

RESUMO

Traditional enzyme characterization methods are low-throughput and therefore limit engineering efforts in synthetic biology and biotechnology. Here, we propose a DNA-linked enzyme-coupled assay (DLEnCA) to monitor enzyme reactions in a high-throughput manner. Throughput is improved by removing the need for protein purification and by limiting the need for liquid chromatography mass spectrometry (LCMS) product detection by linking enzymatic function to DNA modification. We demonstrate the DLEnCA methodology using glucosyltransferases as an illustration. The assay utilizes cell free transcription/translation systems to produce enzymes of interest, while UDP-glucose and T4-ß-glucosyltransferase are used to modify DNA, which is detected postreaction using qPCR or a similar means of DNA analysis. OleD and two glucosyltransferases from Arabidopsis were used to verify the assay's generality toward glucosyltransferases. We further show DLEnCA's utility by mapping out the substrate specificity for these enzymes.


Assuntos
DNA/metabolismo , Glucosiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , DNA/análise , Glucosiltransferases/genética , Espectrometria de Massas , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência , Especificidade por Substrato
4.
J Biol Chem ; 286(31): 27729-40, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21622572

RESUMO

The ErbB receptor family is dysregulated in many cancers, and its therapeutic manipulation by targeted antibodies and kinase inhibitors has resulted in effective chemotherapies. However, many malignancies remain refractory to current interventions. We describe a new approach that directs ErbB receptor interactions, resulting in biased signaling and phenotypes. Due to known receptor-ligand affinities and the necessity of ErbB receptors to dimerize to signal, bivalent ligands, formed by the synthetic linkage of two neuregulin-1ß (NRG) moieties, two epidermal growth factor (EGF) moieties, or an EGF and a NRG moiety, can potentially drive homotypic receptor interactions and diminish formation of HER2-containing heterodimers, which are implicated in many malignancies and are a prevalent outcome of stimulation by native, monovalent EGF, or NRG. We demonstrate the therapeutic potential of this approach by showing that bivalent NRG (NN) can bias signaling in HER3-expressing cancer cells, resulting in some cases in decreased migration, inhibited proliferation, and increased apoptosis, whereas native NRG stimulation increased the malignant potential of the same cells. Hence, this new approach may have therapeutic relevance in ovarian, breast, lung, and other cancers in which HER3 has been implicated.


Assuntos
Receptor ErbB-3/metabolismo , Transdução de Sinais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Ligantes , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neuregulina-1/metabolismo , Fenótipo , Engenharia de Proteínas , Ressonância de Plasmônio de Superfície
5.
J Cell Sci ; 123(Pt 13): 2308-18, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20530570

RESUMO

Heparin-binding EGF-like growth factor (HB-EGF) is a ligand for EGF receptor (EGFR) and possesses the ability to signal in juxtacrine, autocrine and/or paracrine mode, with these alternatives being governed by the degree of proteolytic release of the ligand. Although the spatial range of diffusion of released HB-EGF is restricted by binding heparan-sulfate proteoglycans (HSPGs) in the extracellular matrix and/or cellular glycocalyx, ascertaining mechanisms governing non-released HB-EGF localization is also important for understanding its effects. We have employed a new method for independently tracking the localization of the extracellular EGF-like domain of HB-EGF and the cytoplasmic C-terminus. A striking observation was the absence of the HB-EGF transmembrane pro-form from the leading edge of COS-7 cells in a wound-closure assay; instead, this protein localized in regions of cell-cell contact. A battery of detailed experiments found that this localization derives from a trans interaction between extracellular HSPGs and the HB-EGF heparin-binding domain, and that disruption of this interaction leads to increased release of soluble ligand and a switch in cell phenotype from juxtacrine-induced growth inhibition to autocrine-induced proliferation. Our results indicate that extracellular HSPGs serve to sequester the transmembrane pro-form of HB-EGF at the point of cell-cell contact, and that this plays a role in governing the balance between juxtacrine versus autocrine and paracrine signaling.


Assuntos
Comunicação Celular/fisiologia , Heparina/metabolismo , Junções Intercelulares , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sequência de Aminoácidos , Anfirregulina , Animais , Células COS , Proliferação de Células , Chlorocebus aethiops , Família de Proteínas EGF , Glicoproteínas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Dados de Sequência Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína
6.
Proc Natl Acad Sci U S A ; 102(30): 10622-7, 2005 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16020536

RESUMO

Growth factor signaling can affect tissue remodeling through autocrine/paracrine mechanisms. Recent evidence indicates that EGF receptor transactivation by heparin-binding EGF (HB-EGF) contributes to hypertrophic signaling in cardiomyocytes. Here, we show that HB-EGF operates in a spatially restricted circuit in the extracellular space within the myocardium, revealing the critical nature of the local microenvironment in intercellular signaling. This highly localized microenvironment of HB-EGF signaling was demonstrated with 3D morphology, consistent with predictions from a computational model of EGF signaling. HB-EGF secretion by a given cardiomyocyte in mouse left ventricles led to cellular hypertrophy and reduced expression of connexin43 in the overexpressing cell and in immediately adjacent cells but not in cells farther away. Thus, HB-EGF acts as an autocrine and local paracrine cardiac growth factor that leads to loss of gap junction proteins within a spatially confined microenvironment. These findings demonstrate how cells can coordinate remodeling with their immediate neighboring cells with highly localized extracellular EGF signaling.


Assuntos
Conexina 43/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/citologia , Transdução de Sinais , Remodelação Ventricular/fisiologia , Análise de Variância , Animais , Northern Blotting , Western Blotting , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/metabolismo , Técnicas de Transferência de Genes , Heparina/metabolismo , Imuno-Histoquímica , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...