Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pulm Circ ; 12(4): e12165, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36484057

RESUMO

It is unknown whether biological sex influences phenotypes of commercially available human pulmonary artery endothelial cells (HPAECs). Ten lots of commercial HPAECs were used (Lonza Biologics; PromoCell). Five (50%) were confirmed to be genotypically male (SRY+) and five (50%) were confirmed to be female (SRY-). Experiments were conducted between passages five and eight. HPAEC phenotype was confirmed with a panel of cell expression markers. Standard assays for proliferation, migration and tube formation were performed in triplicate with technical replicates, under three treatment conditions (EndoGRO; Sigma-Aldrich). Apoptosis was assessed by exposing cells treated with complete media or low serum media to hypoxic (1% oxygen) or normoxic (20% oxygen) conditions. Laboratory staff was blinded. The median (range) age of male and female donors from whom the HPAECs were derived was 58 (48-60) and 56 (33-67), respectively. Our results suggest decreased proliferation in genotypically female cells compared with male cells (p = 0.09). With increasing donor age, female cells were less proliferative and male cells were more proliferative (p = 0.001). Female cells were significantly more apoptotic than male cells by condition (p = 0.001). Female cells were significantly more migratory than male cells in complete media but less migratory than male cells under vascular endothelial growth factor enriched conditions (p = 0.001). There are subtle sex-based differences in the behavior of HPAECs that depend on donor sex and, less so, age. These differences may undermine rigor and reproducibility. Future studies should define whether biological sex is an important regulator of HPAEC function in health and disease.

2.
Eur Respir J ; 55(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949110

RESUMO

Endothelial dysfunction is a hallmark of pulmonary arterial hypertension (PAH) but there are no established methods to study pulmonary artery endothelial cells (PAECs) from living patients. We sought to culture PAECs from pulmonary artery catheter (PAC) balloons used during right-heart catheterisation (RHC) to characterise successful culture attempts and to describe PAEC behaviour.PAECs were grown in primary culture to confluence and endothelial cell phenotype was confirmed. Standard assays for apoptosis, migration and tube formation were performed between passages three to eight. We collected 49 PAC tips from 45 subjects with successful PAEC culture from 19 balloons (39%).There were no differences in subject demographic details or RHC procedural details in successful versus unsuccessful attempts. However, for subjects who met haemodynamic criteria for PAH, there was a higher but nonsignificant (p=0.10) proportion amongst successful attempts (10 out of 19, 53%) versus unsuccessful attempts (nine out of 30, 30%). A successful culture was more likely in subjects with a lower cardiac index (p=0.03) and higher pulmonary vascular resistance (p=0.04). PAECs from a subject with idiopathic PAH were apoptosis resistant compared to commercial PAECs (p=0.04) and had reduced migration compared to PAECs from a subject with portopulmonary hypertension with high cardiac output (p=0.01). PAECs from a subject with HIV-associated PAH formed fewer (p=0.01) and shorter (p=0.02) vessel networks compared to commercial PAECs.Sustained culture and characterisation of PAECs from RHC balloons is feasible, especially in PAH with high haemodynamic burden. This technique may provide insight into endothelial dysfunction during PAH pathogenesis.


Assuntos
Artéria Pulmonar , Doenças Vasculares , Catéteres , Células Cultivadas , Células Endoteliais , Humanos , Pulmão
3.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31391272

RESUMO

Human immunodeficiency virus (HIV-1) entry into cells is mediated by the viral envelope glycoprotein (Env) trimer, which consists of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. When gp120 binds sequentially to the receptors CD4 and CCR5 on the target cell, the metastable Env trimer is triggered to undergo entry-related conformational changes. PF-68742 is a small molecule that inhibits the infection of a subset of HIV-1 strains by interfering with an Env function other than receptor binding. Determinants of HIV-1 resistance to PF-68742 map to the disulfide loop and fusion peptide of gp41. Of the four possible PF-68742 stereoisomers, only one, MF275, inhibited the infection of CD4-positive CCR5-positive cells by some HIV-1 strains. MF275 inhibition of these HIV-1 strains occurred after CD4 binding but before the formation of the gp41 six-helix bundle. Unexpectedly, MF275 activated the infection of CD4-negative CCR5-positive cells by several HIV-1 strains resistant to the inhibitory effects of the compound in CD4-positive target cells. In contrast to CD4 complementation by CD4-mimetic compounds, activation of CD4-independent infection by MF275 did not depend upon the availability of the gp120 Phe 43 cavity. Sensitivity to inhibitors indicates that MF275-activated virus entry requires formation/exposure of the gp41 heptad repeat (HR1) as well as CCR5 binding. MF275 apparently activates a virus entry pathway parallel to that triggered by CD4 and CD4-mimetic compounds. Strain-dependent divergence in Env conformational transitions allows different outcomes, inhibition or activation, in response to MF275. Understanding the mechanisms of MF275 activity should assist efforts to optimize its utility.IMPORTANCE Envelope glycoprotein (Env) spikes on the surface of human immunodeficiency virus (HIV-1) bind target cell receptors, triggering changes in the shape of Env. We studied a small molecule, MF275, that also induced shape changes in Env. The consequences of MF275 interaction with Env depended on the HIV-1 strain, with infection by some viruses inhibited and infection by other viruses enhanced. These studies reveal the strain-dependent diversity of HIV-1 Envs as they undergo shape changes in proceeding down the entry pathway. Appreciation of this diversity will assist attempts to develop broadly active inhibitors of HIV-1 entry.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/classificação , HIV-1/efeitos dos fármacos , Piridonas/farmacologia , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Piridonas/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Estereoisomerismo , Sulfonamidas/química , Replicação Viral
4.
Nat Commun ; 9(1): 2363, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915222

RESUMO

The envelope glycoprotein (Env) trimer ((gp120/gp41)3) mediates human immunodeficiency virus (HIV-1) entry into cells. The "closed," antibody-resistant Env trimer is driven to more open conformations by binding the host receptor, CD4. Broadly neutralizing antibodies that recognize conserved elements of the closed Env are potentially protective, but are elicited inefficiently. HIV-1 has evolved multiple mechanisms to evade readily elicited antibodies against more open Env conformations. Small-molecule CD4-mimetic compounds (CD4mc) bind the HIV-1 gp120 Env and promote conformational changes similar to those induced by CD4, exposing conserved Env elements to antibodies. Here, we show that a CD4mc synergizes with antibodies elicited by monomeric HIV-1 gp120 to protect monkeys from multiple high-dose intrarectal challenges with a heterologous simian-human immunodeficiency virus (SHIV). The protective immune response persists for at least six months after vaccination. CD4mc should increase the protective efficacy of any HIV-1 Env vaccine that elicits antibodies against CD4-induced conformations of Env.


Assuntos
Vacinas contra a AIDS/imunologia , Guanidinas/farmacologia , Proteína gp120 do Envelope de HIV/imunologia , Indenos/farmacologia , Lentivirus de Primatas/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Guanidinas/química , Células HEK293 , Humanos , Imunidade Heteróloga , Imunização , Indenos/química , Macaca mulatta
5.
J Infect Dis ; 218(3): 471-475, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29617845

RESUMO

Background: Small-molecule CD4-mimetic compounds (CD4mc) inhibit human immunodeficiency virus (HIV-1) entry by blocking binding to the CD4 receptor and by premature triggering of the viral envelope glycoprotein (Env) spike. Methods: The efficacy of a CD4mc in protecting bone marrow-liver-thymus (BLT) humanized mice from vaginal HIV-1 challenge was evaluated. Results: Intravaginal application of the CD4mc JP-III-48, either before or simultaneously with virus challenge, protected BLT humanized mice from HIV-1JR-CSF infection in a dose- dependent manner. Conclusion: The direct antiviral effects of a CD4mc prevent HIV-1 infection in a murine model of sexual transmission.


Assuntos
Biomimética , Antígenos CD4/administração & dosagem , Inibidores da Fusão de HIV/administração & dosagem , Infecções por HIV/prevenção & controle , HIV-1/efeitos dos fármacos , Administração Intravaginal , Animais , Medula Óssea , Modelos Animais de Doenças , Feminino , Fígado , Camundongos SCID , Timo , Resultado do Tratamento
6.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618643

RESUMO

The mature envelope glycoprotein (Env) spike on the surfaces of human immunodeficiency virus type 1 (HIV-1)-infected cells and virions is derived from proteolytic cleavage of a trimeric gp160 glycoprotein precursor. In these studies, we compared the conformations of cleaved and uncleaved membrane Envs with truncated cytoplasmic tails to those of stabilized soluble gp140 SOSIP.664 Env trimers. Deletion of the gp41 cytoplasmic tail did not significantly affect the sensitivity of viruses with the HIV-1AD8 Env to inhibition by antibodies or a CD4-mimetic compound. After glutaraldehyde fixation and purification from membranes, a cleaved Env exhibited a hydrodynamic radius of ∼10 nm and an antibody-binding profile largely consistent with that expected based on virus neutralization sensitivity. The purified cleaved Env trimers exhibited a hollow architecture with a central void near the trimer axis. Uncleaved Env, cross-linked and purified in parallel, exhibited a hydrodynamic radius similar to that of the cleaved Env. However, the uncleaved Env was recognized by poorly neutralizing antibodies and appeared by negative-stain electron microscopy to sample multiple conformations. Compared with membrane Envs, stabilized soluble gp140 SOSIP.664 Env trimers appear to be more compact, as reflected in their smaller hydrodynamic radii and negative-stain electron microscopy structures. The antigenic features of the soluble gp140 SOSIP.664 Env trimers differed from those of the cleaved membrane Env, particularly in gp120 V3 and some CD4-binding-site epitopes. Thus, proteolytic maturation allows the membrane-anchored Env to achieve a conformation that retains functional metastability but masks epitopes for poorly neutralizing antibodies.IMPORTANCE The entry of human immunodeficiency virus type 1 (HIV-1) into host cells is mediated by the envelope glycoprotein (Env) spike on the surface of the virus. Host antibodies elicited during natural HIV-1 infection or by vaccination can potentially recognize the Env spike and block HIV-1 infection. However, the changing shape of the HIV-1 Env spike protects the virus from antibody binding. Understanding the shapes of natural and man-made preparations of HIV-1 Envs will assist the development of effective vaccines against the virus. Here, we evaluate the effects of several Env modifications commonly used to produce Env preparations for vaccine studies and the determination of structure. We found that the cleavage of the HIV-1 Env precursor helps Env to assume its natural shape, which resists the binding of many commonly elicited antibodies. Stabilized soluble Envs exhibit more compact shapes but expose some Env elements differently than the natural Env.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linhagem Celular Tumoral , Cães , Glutaral/química , Células HEK293 , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/genética , Humanos , Conformação Proteica , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
7.
Virol J ; 14(1): 33, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209172

RESUMO

BACKGROUND: The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env), a Type 1 transmembrane protein, assembles into a trimeric spike complex that mediates virus entry into host cells. The high potential energy of the metastable, unliganded Env trimer is maintained by multiple non-covalent contacts among the gp120 exterior and gp41 transmembrane Env subunits. Structural studies suggest that the gp41 transmembrane region forms a left-handed coiled coil that contributes to the Env trimer interprotomer contacts. Here we evaluate the contribution of the gp41 transmembrane region to the folding and stability of Env trimers. METHODS: Multiple polar/charged amino acid residues, which hypothetically disrupt the stop-transfer signal, were introduced in the proposed lipid-interactive face of the transmembrane coiled coil, allowing release of soluble cleavage-negative Envs containing the modified transmembrane region (TMmod). We also examined effects of cleavage, the cytoplasmic tail and a C-terminal fibritin trimerization (FT) motif on oligomerization, antigenicity and functionality of soluble and membrane-bound Envs. RESULTS: The introduction of polar/charged amino acids into the transmembrane region resulted in the secretion of soluble Envs from the cell. However, these TMmod Envs primarily formed dimers. By contrast, control cleavage-negative sgp140 Envs lacking the transmembrane region formed soluble trimers, dimers and monomers. TMmod and sgp140 trimers were stabilized by the addition of a C-terminal FT sequence, but still exhibited carbohydrate and antigenic signatures of a flexible ectodomain structure. On the other hand, detergent-solubilized cleaved and uncleaved Envs isolated from the membranes of expressing cells exhibited "tighter" ectodomain structures, based on carbohydrate modifications. These trimers were found to be unstable in detergent solutions, but could be stabilized by the addition of a C-terminal FT moiety. The C-terminal FT domain decreased Env cleavage and syncytium-forming ability by approximately three-fold; alteration of the FT trimerization interface restored Env cleavage and syncytium formation to near-wild-type levels. CONCLUSION: The modified transmembrane region was not conducive to trimerization of soluble Envs. However, for HIV-1 Env ectodomains that are minimally modified, membrane-anchored Envs exhibit the most native structures and can be stabilized by appropriately positioned FT domains.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Dobramento de Proteína , Multimerização Proteica , Substituição de Aminoácidos , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica
8.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003492

RESUMO

Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the transitions from the unliganded state to the CD4-bound state.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , HIV-1/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Cães , Células HEK293 , HIV-1/fisiologia , Humanos , Piperazinas/química , Piperazinas/farmacologia
9.
AIDS Res Hum Retroviruses ; 33(5): 428-431, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27846736

RESUMO

Recent studies have linked antibody Fc-mediated effector functions with control of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus infections. Interestingly, the presence of antibodies with potent antibody-dependent cellular cytotoxicity (ADCC) activity in RV144 vaccine trial participants correlated inversely with HIV-1 acquisition risk. These antibodies were recently found to recognize epitopes on the HIV-1 envelope (Env) glycoprotein exposed upon Env-CD4 binding. Accordingly, small-molecule CD4 mimetics (CD4mc) that induce Env to sample the CD4-bound conformation were shown to sensitize HIV-1-infected cells to ADCC mediated by sera from HIV-1-infected individuals. However, it remains unknown whether antibodies elicited through immunization can also mediate CD4mc-induced ADCC. In this study, we tested the capacity of CD4mc to sensitize HIV-1-infected cells to ADCC by sera from Env-vaccinated nonhuman primates using a FACS-based ADCC assay. In parallel, we evaluated the ability of CD4mc to sensitize HIV-1 viral particles to neutralization by sera from these immunized animals. We found that the vaccine-induced antibodies were able to mediate ADCC and viral neutralization in the presence, but not the absence, of CD4mc. Thus, CD4mc are capable of sensitizing HIV-1-infected cells to ADCC and infectious viral particles to neutralization by easy-to-elicit antibodies that are otherwise unable to mediate these activities.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Biomimética , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/virologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Animais , Citometria de Fluxo , Macaca mulatta
10.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881646

RESUMO

Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE: The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important for virus entry. Small-molecule CD4-mimetic compounds inhibit HIV-1 infection by multiple mechanisms: (i) direct blockade of the interaction between the gp120 exterior envelope glycoprotein and CD4; (ii) premature triggering of conformational changes in the envelope glycoproteins, leading to irreversible inactivation; and (iii) exposure of cryptic epitopes to antibodies, allowing virus neutralization. The consequences of the binding of the CD4-mimetic compound to the HIV-1 envelope glycoproteins depends upon how many of the three subunits of the trimer are bound and upon the propensity of the envelope glycoproteins to undergo conformational changes. Understanding the mechanistic factors that influence the activity of CD4-mimetic compounds can help to improve their potency and coverage of diverse HIV-1 strains.


Assuntos
Antígenos CD4/química , Proteína gp120 do Envelope de HIV/química , Mimetismo Molecular , Multimerização Proteica , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Anticorpos Neutralizantes/farmacologia , Antígenos CD4/genética , Antígenos CD4/metabolismo , Linhagem Celular , Células Gigantes , Anticorpos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/agonistas , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Mutação , Fenótipo , Ligação Proteica , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Internalização do Vírus
11.
J Virol ; 90(10): 5031-5046, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962221

RESUMO

UNLABELLED: The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE: Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.


Assuntos
Fármacos Anti-HIV/farmacologia , Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Fármacos Anti-HIV/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/biossíntese , Antígenos CD4/metabolismo , Epitopos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Infecções por HIV/virologia , Haplorrinos , Humanos , Imunização , Mimetismo Molecular , Fragmentos de Peptídeos/imunologia
12.
ACS Med Chem Lett ; 7(3): 330-4, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26985324

RESUMO

The optimization, based on computational, thermodynamic, and crystallographic data, of a series of small-molecule ligands of the Phe43 cavity of the envelope glycoprotein gp120 of human immunodeficiency virus (HIV) has been achieved. Importantly, biological evaluation revealed that the small-molecule CD4 mimics (4-7) inhibit HIV-1 entry into target cells with both significantly higher potency and neutralization breadth than previous congeners, while maintaining high selectivity for the target virus. Their binding mode was characterized via thermodynamic and crystallographic studies.

13.
Bioorg Med Chem Lett ; 24(23): 5439-45, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25454268

RESUMO

With the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The inhibition of HIV-1 entry is an attractive, yet underexploited therapeutic approach with implications for salvage and preexposure prophylactic regimens, as well as topical microbicides. Using the combination of a field-derived bioactive conformation template to perform virtual screening and iterative bioisosteric replacements, coupled with in silico predictions of absorption, distribution, metabolism, and excretion, we have identified new leads for HIV-1 entry inhibitors.


Assuntos
Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Descoberta de Drogas , Humanos , Conformação Molecular
14.
J Virol ; 88(12): 6542-55, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696475

RESUMO

UNLABELLED: Approaches to prevent human immunodeficiency virus (HIV-1) transmission are urgently needed. Difficulties in eliciting antibodies that bind conserved epitopes exposed on the unliganded conformation of the HIV-1 envelope glycoprotein (Env) trimer represent barriers to vaccine development. During HIV-1 entry, binding of the gp120 Env to the initial receptor, CD4, triggers conformational changes in Env that result in the formation and exposure of the highly conserved gp120 site for interaction with the coreceptors, CCR5 and CXCR4. The DMJ compounds (+)-DMJ-I-228 and (+)-DMJ-II-121 bind gp120 within the conserved Phe 43 cavity near the CD4-binding site, block CD4 binding, and inhibit HIV-1 infection. Here we show that the DMJ compounds sensitize primary HIV-1, including transmitted/founder viruses, to neutralization by monoclonal antibodies directed against CD4-induced (CD4i) epitopes and the V3 region, two gp120 elements involved in coreceptor binding. Importantly, the DMJ compounds rendered primary HIV-1 sensitive to neutralization by antisera elicited by immunization of rabbits with HIV-1 gp120 cores engineered to assume the CD4-bound state. Thus, small molecules like the DMJ compounds may be useful as microbicides to inhibit HIV-1 infection directly and to sensitize primary HIV-1 to neutralization by readily elicited antibodies. IMPORTANCE: Preventing HIV-1 transmission is a priority for global health. Eliciting antibodies that can neutralize many different strains of HIV-1 is difficult, creating problems for the development of a vaccine. We found that certain small-molecule compounds can sensitize HIV-1 to particular antibodies. These antibodies can be elicited in rabbits. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Antivirais/farmacologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , Vacinas contra a AIDS/administração & dosagem , Animais , Antígenos CD4/genética , Linhagem Celular , Feminino , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Humanos , Testes de Neutralização , Coelhos
15.
ACS Med Chem Lett ; 4(3): 338-343, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23667716

RESUMO

The design, synthesis, thermodynamic and crystallographic characterization of a potent, broad spectrum, second-generation HIV-1 entry inhibitor that engages conserved carbonyl hydrogen bonds within gp120 has been achieved. The optimized antagonist exhibits a sub-micromolar binding affinity (110 nM) and inhibits viral entry of clade B and C viruses (IC50 geometric mean titer of 1.7 and 14.0 µM, respectively), without promoting CD4-independent viral entry. thermodynamic signatures indicate a binding preference for the (R,R)-over the (S,S)-enantiomer. The crystal structure of the small molecule-gp120 complex reveals the displacement of crystallographic water and the formation of a hydrogen bond with a backbone carbonyl of the bridging sheet. Thus, structure-based design and synthesis targeting the highly conserved and structurally characterized CD4:gp120 interface is an effective tactic to enhance the neutralization potency of small molecule HIV-1 entry inhibitors.

16.
J Virol ; 86(16): 8472-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22647699

RESUMO

The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4'-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Desenvelopamento do Vírus/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/toxicidade , Calorimetria , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa/efeitos dos fármacos , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
17.
J Med Chem ; 55(9): 4382-96, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22497421

RESUMO

Cellular infection by HIV-1 is initiated with a binding event between the viral envelope glycoprotein gp120 and the cellular receptor protein CD4. The CD4-gp120 interface is dominated by two hotspots: a hydrophobic gp120 cavity capped by Phe43(CD4) and an electrostatic interaction between residues Arg59(CD4) and Asp368(gp120). The CD4 mimetic small-molecule NBD-556 (1) binds within the gp120 cavity; however, 1 and related congeners demonstrate limited viral neutralization breadth. Herein, we report the design, synthesis, characterization, and X-ray structures of gp120 in complex with small molecules that simultaneously engage both binding hotspots. The compounds specifically inhibit viral infection of 42 tier 2 clades B and C viruses and are shown to be antagonists of entry into CD4-negative cells. Dual hotspot design thus provides both a means to enhance neutralization potency of HIV-1 entry inhibitors and a novel structural paradigm for inhibiting the CD4-gp120 protein-protein interaction.


Assuntos
Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Indanos/química , Indanos/farmacologia , Antígenos CD4/metabolismo , Calorimetria/métodos , Cristalografia por Raios X , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/síntese química , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Indanos/síntese química , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Simulação de Dinâmica Molecular , Testes de Neutralização/métodos , Relação Estrutura-Atividade , Termodinâmica , Internalização do Vírus/efeitos dos fármacos
18.
Biomaterials ; 32(33): 8663-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21862123

RESUMO

There are approximately 33.4 million adults living with HIV worldwide of which an estimated 15.7 million are women. Although there has been enormous progress in the therapy of HIV/AIDS, treatment is not curative. Prevention is therefore of paramount importance, but vaccine-based and microbicidal approaches are still in their infancy. Since women acquire the virus largely through sexual intercourse, we developed liposomal systems potentially suitable for intra-vaginal use to prevent HIV-1 infection. We formulated liposomes from a range of naturally-occurring and synthetic lipids with varying physicochemical properties, and tested their ability to inhibit infection of transformed cells that express receptors specific to the virus. We identified formulations with the most favorable balance between decreasing HIV infection and causing cytotoxicity (i.e. therapeutic index). The therapeutic index improved with increasing cardiolipin content, and degree of unsaturation. Tissue reaction to these formulations was benign after intra-vaginal instillation in an in vivo female mouse model. These results support the potential use of cardiolipin-based liposomes enriched with synthetic lipids as microbicides for the prevention of HIV infection in women.


Assuntos
Infecções por HIV/prevenção & controle , Lipossomos , Animais , Materiais Biocompatíveis , Feminino , Humanos , Camundongos
19.
PLoS Pathog ; 7(6): e1002101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731494

RESUMO

Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like") viruses, globally sensitive ("Tier 1") viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4.


Assuntos
HIV-1/patogenicidade , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Variação Genética , Anticorpos Anti-HIV , Infecções por HIV , Humanos , Testes de Neutralização , Receptores Virais/metabolismo
20.
Bioorg Med Chem ; 19(1): 91-101, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21169023

RESUMO

The low-molecular-weight compound JRC-II-191 inhibits infection of HIV-1 by blocking the binding of the HIV-1 envelope glycoprotein gp120 to the CD4 receptor and is therefore an important lead in the development of a potent viral entry inhibitor. Reported here is the use of two orthogonal screening methods, gold docking and ROCS shape-based similarity searching, to identify amine-building blocks that, when conjugated to the core scaffold, yield novel analogs that maintain similar affinity for gp120. Use of this computational approach to expand SAR produced analogs of equal inhibitory activity but with diverse capacity to enhance viral infection. The novel analogs provide additional lead scaffolds for the development of HIV-1 entry inhibitors that employ protein-ligand interactions in the vestibule of gp120 Phe 43 cavity.


Assuntos
Fármacos Anti-HIV/farmacologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Desenho de Fármacos , Proteína gp120 do Envelope de HIV/metabolismo , Fusão de Membrana/efeitos dos fármacos , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...