Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(15): 154502, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21230910

RESUMO

Linear transient growth analysis is commonly used to suggest the structure of disturbances which are particularly efficient in triggering transition to turbulence in shear flows. We demonstrate that the addition of nonlinearity to the analysis can substantially change the prediction made in pipe flow from simple two-dimensional streamwise rolls to a spanwise and cross-stream localized three-dimensional state. This new nonlinear optimal is demonstrably more efficient in triggering turbulence than the linear optimal indicating that there are better ways to design perturbations to achieve transition.

2.
Philos Trans A Math Phys Eng Sci ; 367(1888): 457-72, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19000971

RESUMO

The recent theoretical discovery of finite-amplitude travelling waves (TWs) in pipe flow has reignited interest in the transitional phenomena that Osborne Reynolds studied 125 years ago. Despite all being unstable, these waves are providing fresh insight into the flow dynamics. We describe two new classes of TWs, which, while possessing more restrictive symmetries than previously found TWs of Faisst & Eckhardt (2003 Phys. Rev. Lett. 91, 224502) and Wedin & Kerswell (2004 J. Fluid Mech. 508, 333-371), seem to be more fundamental to the hierarchy of exact solutions. They exhibit much higher wall shear stresses and appear at notably lower Reynolds numbers. The first M-class comprises the various discrete rotationally symmetric analogues of the mirror-symmetric wave found in Pringle & Kerswell (2007 Phys. Rev. Lett. 99, 074502), and have a distinctive double-layered structure of fast and slow streaks across the pipe radius. The second N-class has the more familiar separation of fast streaks to the exterior and slow streaks to the interior and looks like the precursor to the class of non-mirror-symmetric waves already known.


Assuntos
Modelos Teóricos , Velocidade do Fluxo Sanguíneo
3.
Phys Rev Lett ; 99(7): 074502, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17930899

RESUMO

New families of three-dimensional nonlinear traveling waves are discovered in pipe flow. In contrast with known waves [H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003); H. Wedin and R. R. Kerswell, J. Fluid Mech. 508, 333 (2004), they possess no discrete rotational symmetry and exist at a significantly lower Reynolds numbers (Re). First to appear is a mirror-symmetric traveling wave which is born in a saddle node bifurcation at Re=773. As Re increases, "asymmetric" modes arise through a symmetry-breaking bifurcation. These look to be a minimal coherent unit consisting of one slow streak sandwiched between two fast streaks located preferentially to one side of the pipe. Helical and nonhelical rotating waves are also found, emphasizing the richness of phase space even at these very low Reynolds numbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...