Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 953013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185300

RESUMO

During the last two decades, kinase inhibitors have become the major drug class for targeted cancer therapy. Although the number of approved kinase inhibitors increases rapidly, comprehensive in vitro profiling and comparison of inhibitor activities is often lacking in the public domain. Here we report the extensive profiling and comparison of 21 kinase inhibitors approved by the FDA for oncology indications since June 2018 and 13 previously approved comparators on panels of 255 biochemical kinase assays and 134 cancer cell line viability assays. Comparison of the cellular inhibition profiles of the EGFR inhibitors gefitinib, dacomitinib, and osimertinib identified the uncommon EGFR p.G719S mutation as a common response marker for EGFR inhibitors. Additionally, the FGFR inhibitors erdafitinib, infigratinib, and pemigatinib potently inhibited the viability of cell lines which harbored oncogenic alterations in FGFR1-3, irrespective of the specific clinical indications of the FGFR inhibitors. These results underscore the utility of in vitro kinase inhibitor profiling in cells for identifying new potential stratification markers for patient selection. Furthermore, comparison of the in vitro inhibition profiles of the RET inhibitors pralsetinib and selpercatinib revealed they had very similar biochemical and cellular selectivity. As an exception, an NTRK3 fusion-positive cell line was potently inhibited by pralsetinib but not by selpercatinib, which could be explained by the targeting of TRK kinases in biochemical assays by pralsetinib but not selpercatinib. This illustrates that unexpected differences in cellular activities between inhibitors that act through the same primary target can be explained by subtle differences in biochemical targeting. Lastly, FLT3-mutant cell lines were responsive to both FLT3 inhibitors gilteritinib and midostaurin, and the PI3K inhibitor duvelisib. Biochemical profiling revealed that the FLT3 and PI3K inhibitors targeted distinct kinases, indicating that unique dependencies can be identified by combined biochemical and cellular profiling of kinase inhibitors. This study provides the first large scale kinase assay or cell panel profiling study for newly approved kinase inhibitors, and shows that comprehensive in vitro profiling of kinase inhibitors can provide rationales for therapy selection and indication expansion of approved kinase inhibitors.

2.
Front Immunol ; 11: 609490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584686

RESUMO

Indoleamine 2,3-dioxygenase (IDO1) is a key regulator of immune suppression by catalyzing the oxidation of L-tryptophan. IDO1 expression has been related to poor prognosis in several cancers and to resistance to checkpoint immunotherapies. We describe the characterization of a novel small molecule IDO1 inhibitor, NTRC 3883-0, in a panel of biochemical and cell-based assays, and various cancer models. NTRC 3883-0 released the inhibitory effect of IDO1 on CD8-positive T cell proliferation in co-cultures of IDO1-overexpressing cells with healthy donor lymphocytes, demonstrating its immune modulatory activity. In a syngeneic mouse model using IDO1-overexpressing B16F10 melanoma cells, NTRC 3883-0 effectively counteracted the IDO1-induced modulation of L-tryptophan and L-kynurenine levels, demonstrating its in vivo target modulation. Finally, we studied the expression and activity of IDO1 in primary cell cultures established from the malignant ascites of ovarian cancer patients. In these cultures, IDO1 expression was induced upon stimulation with IFNγ, and its activity could be inhibited by NTRC 3883-0. Based on these results, we propose the use of ascites cell-based functional assays for future patient stratification. Our results are discussed in light of the recent discontinuation of clinical trials of more advanced IDO1 inhibitors and the reconsideration of IDO1 as a valid drug target.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Melanoma Experimental/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Cinurenina/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Triptofano/metabolismo
3.
Mol Cancer Ther ; 18(2): 470-481, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30381447

RESUMO

Kinase inhibitors form the largest class of precision medicine. From 2013 to 2017, 17 have been approved, with 8 different mechanisms. We present a comprehensive profiling study of all 17 inhibitors on a biochemical assay panel of 280 kinases and proliferation assays of 108 cancer cell lines. Drug responses of the cell lines were related to the presence of frequently recurring point mutations, insertions, deletions, and amplifications in 15 well-known oncogenes and tumor-suppressor genes. In addition, drug responses were correlated with basal gene expression levels with a focus on 383 clinically actionable genes. Cell lines harboring actionable mutations defined in the FDA labels, such as mutant BRAF(V600E) for cobimetinib, or ALK gene translocation for ALK inhibitors, are generally 10 times more sensitive compared with wild-type cell lines. This sensitivity window is more narrow for markers that failed to meet endpoints in clinical trials, for instance CDKN2A loss for CDK4/6 inhibitors (2.7-fold) and KRAS mutation for cobimetinib (2.3-fold). Our data underscore the rationale of a number of recently opened clinical trials, such as ibrutinib in ERBB2- or ERBB4-expressing cancers. We propose and validate new response biomarkers, such as mutation in FBXW7 or SMAD4 for EGFR and HER2 inhibitors, ETV4 and ETV5 expression for MEK inhibitors, and JAK3 expression for ALK inhibitors. Potentially, these new markers could be combined to improve response rates. This comprehensive overview of biochemical and cellular selectivities of approved kinase inhibitor drugs provides a rich resource for drug repurposing, basket trial design, and basic cancer research.


Assuntos
Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adenina/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Aprovação de Drogas , Reposicionamento de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Piperidinas , Mutação Puntual , Mapas de Interação de Proteínas , Pirazóis/farmacologia , Pirimidinas/farmacologia
4.
Mol Cancer Ther ; 16(11): 2609-2617, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28751540

RESUMO

The spindle assembly checkpoint kinase TTK (Mps1) is a key regulator of chromosome segregation and is the subject of novel targeted therapy approaches by small-molecule inhibitors. Although the first TTK inhibitors have entered phase I dose escalating studies in combination with taxane chemotherapy, a patient stratification strategy is still missing. With the aim to identify a genomic biomarker to predict the response of tumor cells to TTK inhibitor therapy, we profiled a set of preclinical and clinical TTK inhibitors from different chemical series on a panel of 66 genetically characterized cell lines derived from different tumors (Oncolines). Cell lines harboring activating mutations in the CTNNB1 gene, encoding the Wnt pathway signaling regulator ß-catenin, were on average up to five times more sensitive to TTK inhibitors than cell lines wild-type for CTNNB1 The association of CTNNB1-mutant status and increased cancer cell line sensitivity to TTK inhibition was confirmed with isogenic cell line pairs harboring either mutant or wild-type CTNNB1 Treatment of a xenograft model of a CTNNB1-mutant cell line with the TTK inhibitor NTRC 0066-0 resulted in complete inhibition of tumor growth. Mutations in CTNNB1 occur at relatively high frequency in endometrial cancer and hepatocellular carcinoma, which are known to express high TTK levels. We propose mutant CTNNB1 as a prognostic drug response biomarker, enabling the selection of patients most likely to respond to TTK inhibitor therapy in proof-of-concept clinical trials. Mol Cancer Ther; 16(11); 2609-17. ©2017 AACR.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ciclo Celular/genética , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , beta Catenina/genética , Animais , Biomarcadores Farmacológicos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Mol Biol ; 429(14): 2211-2230, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28539250

RESUMO

The protein kinase threonine tyrosine kinase (TTK; also known as Mps1) is a critical component of the spindle assembly checkpoint and a promising drug target for the treatment of aggressive cancers, such as triple negative breast cancer. While the first TTK inhibitors have entered clinical trials, little is known about how the inhibition of TTK with small-molecule compounds affects cellular activity. We studied the selective TTK inhibitor NTRC 0066-0, which was developed in our own laboratory, together with 11 TTK inhibitors developed by other companies, including Mps-BAY2b, BAY 1161909, BAY 1217389 (Bayer), TC-Mps1-12 (Shionogi), and MPI-0479605 (Myrexis). Parallel testing shows that the cellular activity of these TTK inhibitors correlates with their binding affinity to TTK and, more strongly, with target residence time. TTK inhibitors are therefore an example where target residence time determines activity in in vitro cellular assays. X-ray structures and thermal stability experiments reveal that the most potent compounds induce a shift of the glycine-rich loop as a result of binding to the catalytic lysine at position 553. This "lysine trap" disrupts the catalytic machinery. Based on these insights, we developed TTK inhibitors, based on a (5,6-dihydro)pyrimido[4,5-e]indolizine scaffold, with longer target residence times, which further exploit an allosteric pocket surrounding Lys553. Their binding mode is new for kinase inhibitors and can be classified as hybrid Type I/Type III. These inhibitors have very potent anti-proliferative activity that rivals classic cytotoxic therapy. Our findings will open up new avenues for more applications for TTK inhibitors in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química
6.
J Mol Biol ; 429(4): 574-586, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28043854

RESUMO

Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC50) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (KD) were calculated to determine kinetic selectivity. Comparison of τ and KD or IC50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Ressonância de Plasmônio de Superfície , Animais , Linhagem Celular , Receptores ErbB/metabolismo , Humanos , Insetos/citologia , Insetos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase
7.
Mol Cancer Ther ; 15(12): 3097-3109, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27587489

RESUMO

Cancer cell line panels are important tools to characterize the in vitro activity of new investigational drugs. Here, we present the inhibition profiles of 122 anticancer agents in proliferation assays with 44 or 66 genetically characterized cancer cell lines from diverse tumor tissues (Oncolines). The library includes 29 cytotoxics, 68 kinase inhibitors, and 11 epigenetic modulators. For 38 compounds this is the first comparative profiling in a cell line panel. By strictly maintaining optimized assay protocols, biological variation was kept to a minimum. Replicate profiles of 16 agents over three years show a high average Pearson correlation of 0.8 using IC50 values and 0.9 using GI50 values. Good correlations were observed with other panels. Curve fitting appears a large source of variation. Hierarchical clustering revealed 44 basic clusters, of which 26 contain compounds with common mechanisms of action, of which 9 were not reported before, including TTK, BET and two clusters of EZH2 inhibitors. To investigate unexpected clusterings, sets of BTK, Aurora and PI3K inhibitors were profiled in biochemical enzyme activity assays and surface plasmon resonance binding assays. The BTK inhibitor ibrutinib clusters with EGFR inhibitors, because it cross-reacts with EGFR. Aurora kinase inhibitors separate into two clusters, related to Aurora A or pan-Aurora selectivity. Similarly, 12 inhibitors in the PI3K/AKT/mTOR pathway separated into different clusters, reflecting biochemical selectivity (pan-PI3K, PI3Kßγδ-isoform selective or mTOR-selective). Of these, only allosteric mTOR inhibitors preferentially targeted PTEN-mutated cell lines. This shows that cell line profiling is an excellent tool for the unbiased classification of antiproliferative compounds. Mol Cancer Ther; 15(12); 3097-109. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Aurora Quinases/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Variações do Número de Cópias de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Perfilação da Expressão Gênica/métodos , Humanos , Mutação , Inibidores de Fosfoinositídeo-3 Quinase , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
8.
PLoS One ; 10(5): e0125021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018524

RESUMO

The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for ß-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Terapia de Alvo Molecular/métodos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , beta Catenina/genética , Compostos Aza/administração & dosagem , Compostos Aza/farmacologia , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Indazóis/administração & dosagem , Indazóis/farmacologia , Indóis/administração & dosagem , Indóis/farmacologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Mutação , Oxazóis/administração & dosagem , Oxazóis/farmacologia , Oximas/administração & dosagem , Oximas/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Piridonas/administração & dosagem , Piridonas/farmacologia , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Triazóis/administração & dosagem , Triazóis/farmacologia , Vemurafenib , beta Catenina/metabolismo
9.
Nat Commun ; 6: 5906, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25562820

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.


Assuntos
Proteínas Cdh1/metabolismo , Ciclo Celular/fisiologia , Complexos Multiproteicos/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas Cdh1/genética , Linhagem Celular Tumoral , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Imunoprecipitação , Espectrometria de Massas , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas Repressoras/genética , Proteína do Retinoblastoma/genética , Análise de Sequência de DNA
10.
PLoS One ; 9(3): e92146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651269

RESUMO

The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two large assay panels: (1) a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins; and (2) a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase inhibitor drugs in use (status Nov. 2013), and for six of these drugs, the first kinome profiling data in the public domain. Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers, suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors, and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for EGFR, ABL1 and BRAF(V600E)-driven cell growth, and demonstrates that the best targeted agents combine high biochemical potency with good selectivity. For ABL1 inhibitors, we computationally deduce optimized kinase profiles for use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the evaluation of kinase inhibitor drug action.


Assuntos
Marcação de Genes , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Proteínas Quinases/uso terapêutico , Análise de Variância , Marcadores Genéticos , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Reprodutibilidade dos Testes
11.
PLoS Genet ; 7(11): e1002362, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102824

RESUMO

Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4) expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2), which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators.


Assuntos
Caenorhabditis elegans/genética , Ciclo Celular/genética , Ciclina D/genética , Ciclina D/metabolismo , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/genética , Células Musculares/citologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Diferenciação Celular , Proliferação de Células , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Replicação do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Musculares/metabolismo , Especificidade de Órgãos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...